
Dynamic C 5.x
Integrated C Development System

Function Reference
Revision 3

Z-World � Dynamic C 5.x

Function Reference � Part Number 019-0002-03
Revision 3 � 021-0005-03 � Printed in U.S.A.
Last revised by TI � August 21, 1998

Copyright

© 1998 Z-World, Inc. All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its
products without providing notice.

Trademarks
� Dynamic C® is a registered trademark of Z-World, Inc.
� PLCBus� is a trademark of Z-World, Inc.
� Windows® is a registered trademark of Microsoft Corporation.

Notice to Users
When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer�s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:

24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
(530) 753-0618
http://www.z world.com
zworld@zworld.com

Function Reference Table of Contents s iii

TABLE OF CONTENTS

About This Manual v

General Support Libraries 1-1
Global Initialization ... 1-2
BIOS Functions .. 1-2
MATH.LIB .. 1-6
STDIO.LIB .. 1-10
STRING.LIB .. 1-15
SYS.LIB .. 1-19
XMEM.LIB .. 1-22

Multitasking Libraries 2-1
RTK.LIB .. 2-2
SRTK.LIB .. 2-4
VDRIVER.LIB .. 2-4

Controller Libraries 3-1
BL1000.LIB .. 3-2
BL11XX.LIB .. 3-2
BL14_15.LIB .. 3-4
BL16XX.LIB .. 3-10
PK21XX.LIB .. 3-11
PK22XX.LIB .. 3-13
CM71_72.LIB .. 3-13

AASC Libraries 4-1
AASC.LIB .. 4-2
XModem Functions in AASC.LIB ... 4-7

Other Libraries 5-1
5KEY.LIB .. 5-2
5KEYEXTD.LIB ... 5-7
CPLC.LIB .. 5-9
DRIVERS.LIB .. 5-10
DMA.LIB .. 5-17
FK.LIB .. 5-21
XP88XX.LIB .. 5-23

iv s Table of Contents Dynamic C 5.x

IOEXPAND.LIB ... 5-28
KDM.LIB .. 5-32
LCD2L.LIB .. 5-39
PBUS_LG.LIB .. 5-42
PBUS_TG.LIB .. 5-45

Appendix A: Dynamic C Libraries A-1

Appendix B: Using AASC Libraries B-1
AASC Library Description .. B-2

AASC Library Operation .. B-3
Read .. B-3
Write ... B-3
Peek .. B-4

Status and Errors ... B-4
Library Use ... B-4
Sample Program .. B-4

XModem Transfer .. B-7
Library Use ... B-7
Sample Program .. B-8

Appendix C: Z-World Products C-1

Index

Function Reference About This Manual s v

ABOUT THIS MANUAL

Z-World customers develop software for their programmable controllers
using Z-World�s Dynamic C development system running on an IBM-
compatible PC. The controller is connected to a COM port on the PC,
usually COM2, which by default operates at 19,200 bps.

The Standard version of Dynamic C is suitable for programs up to 80K,
with limited access to extended memory. The Deluxe version supports
programs with up to 512K in ROM (code and constants) and 512K in
RAM (variable data), with full access to extended memory.

The Three Manuals
Dynamic C is documented with three reference manuals:

� Dynamic C Technical Reference

� Dynamic C Application Frameworks

� Dynamic C Function Reference.

The Technical Reference manual describes how to use the Dynamic C
development system to write software for a Z-World programmable
controller.

The Application Frameworks manual discusses various topics in depth.
These topics include the use of the Z-World real-time kernel, costatements,
function chaining, and serial communication.

This manual contains descriptions of all the function libraries on the
Dynamic C disk and all the functions in those libraries.

$ Please read release notes and updates for late-breaking
information about Z-World products and Dynamic C.

Dynamic C 5.xvi s About This Manual

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas:

• Understanding of the basics of operating a software program and
editing files under Windows on a PC.

• Knowledge of the basics of C programming. Dynamic C is not the
same as standard C.

$ For a full treatment of C, refer to the following texts:

The C Programming Language by Kernighan and
Ritchie (published by Prentice-Hall).

and/or

C: A Reference Manual by Harbison and Steel
(published by Prentice-Hall).

• Knowledge of basic Z80 assembly language and architecture.

$ For documentation from Zilog, refer to any of the
following texts:

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

Acronyms
Table 1 lists the acronyms that may be used in this manual.

Table 1. Acronyms

Acronym Meaning

EPROM Erasable Programmable Read-Only Memory

EEPROM Electronically Erasable Programmable Read-Only Memory

NMI Nonmaskable Interrupt

PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

PRT Programmable Reload Timer

RAM Random Access Memory

RTC Real-Time Clock

SIB Serial Interface Board

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

Function Reference About This Manual s vii

Conventions
Table 2 lists and defines typographic conventions that may be used in this
manual.

Programming Abbreviations

This manual uses these programming abbreviations for convenience.

� uint means unsigned integer

� ulong means unsigned long

These abbreviations are not standard C keywords, and will not work in an
application unless they are first declared with typedef or #define as in
the examples shown below.

typedef unsigned int uint

or

#define ulong unsigned long

Table 2. Typographic Conventions

Example Description

 While Courier font (bold) indicates a program, a fragment of a program,
or a Dynamic C keyword or phrase.

 // IN-01… Program comments are written in Courier font, plain face.

 Italics Indicates that something should be typed instead of the italicized
words (e.g., in place of filename, type a file’s name).

 Edit Sans serif font (bold) signifies a menu or menu selection.

 ... An ellipsis indicates that (1) irrelevant program text is omitted for
brevity or that (2) preceding program text may be repeated
indefinitely.

 [] Brackets in a C function’s definition or program segment indicate
that the enclosed directive is optional.

 < > Angle brackets occasionally enclose classes of terms.

 a | b | c A vertical bar indicates that a choice should be made from among
the items listed.

Dynamic C 5.xviii s About This Manual

For ordering information, call your Z-World
Sales Representative at (530) 757-3737.(

Icons
Table 3 displays and defines icons that may be used in this manual.

Table 3. Icons

 Icon Meaning

 $ Refer to or see

 (Please contact

 Caution

 ! Note

 High Voltage

 7,3

Tip

 Factory Default

FD

Function Reference General Support Libraries s 1-1

GENERAL SUPPORT LIBRARIES

The libraries described in Chapter 1 include standard C string and math
functions in addition to general support functions specific to Z-World�s
controllers.

Dynamic C 5.x1-2 s General Support Libraries

Global Initialization
Global initialization is an important, but unclassifiable topic, and is
described here. Your program can initialize variables and take initializa-
tion action (of any complexity) if you do the following:

1. Incorporate _GLOBAL_INIT segments in your functions:

void init_ios();

int my_func(void* thing){
int table[10],j;
float x,y;

...
segchain _GLOBAL_INIT{

for(j=0; j<10; j++){ table[j] = 10-j; }
x = y = 0.781;
init_ios();

}
...

}

2. Make a call to the function chain _GLOBAL_INIT at the start of main.

When your program starts (from scratch or because of a hardware reset)
the call to _GLOBAL_INIT performs the initialization for all
_GLOBAL_INITs throughout your program (including libraries). The name
_GLOBAL_INIT is not the name of a library function. However, there is a
function GLOBAL_INIT in VDRIVER.LIB. If you call VdInit, i.e., you
invoke the virtual driver, VdInit does global initialization for you. You
need not do it yourself. The function uplc_init also calls
_GLOBAL_INIT.

BIOS Functions
These functions reside in BIOS. The source code is provided for your
convenience. To override BIOS function, use

#kill functionname

at the beginning of your user program and redefine the function.

� uint inport(uint port)

Reads a value from the specified I/O port. This may be an internal
Z180 register, or it may access external hardware. Refer to the
controller reference manual for a list of I/O ports.

The function returns the value from the I/O port in lower byte, and zero
in upper byte.

Function Reference General Support Libraries s 1-3

� void outport(uint port, uint value)

Writes value to I/O port. This may be an internal Z180 register, or it
may access external hardware. Refer to your controller reference
manual for a list of I/O ports.

� int ee_rd(int address)

Reads value from EEPROM at specified address. The function returns
EEPROM data (0�255) if successful. It returns a negative value if
unable to read the EEPROM.

� int ee_wr(int address, char value)

Writes value to EEPROM at specified address. The function returns 0
if successful. It returns a negative value if unable to write the
EEPROM.

� void di()

Disables interrupts. Use DI for better efficiency.

� void DI()

Disables interrupts. Dynamic C expands this call inline.

� void ei()

Enables interrupts. Use EI for better efficiency.

� void EI()

Enables interrupts. Dynamic C expands this call inline.

� int iff()

Returns the state of the Z180 interrupt mask. If zero, interrupts are off.
Otherwise, interrupts are on.

� uint bit(void* address, uint bit)

Reads the value of the specified bit at memory address. The bit may
be from 0 to 31. Use BIT (upper case) for inline expansion of this call.
This is equivalent to the following expression:

(*(long*)address >> bit) & 1

The function returns 1 if specified bit is set; 0 if bit is clear.

� uint BIT(void *address, uint bit)

Reads the value of the specified bit at memory address. The bit may
be from 0 to 31. Dynamic C will attempt to expand this call inline.
This is equivalent to the following expression:

(*(long*)address >> bit) & 1

The function returns 1 if specified bit is set, and 0 if bit is clear.

Dynamic C 5.x1-4 s General Support Libraries

� void set(void *address, uint bit)

Sets the specified bit at memory address to 1. The bit may be from 0
to 31. Use SET (upper case) for inline expansion of this call. This is
equivalent to the following expression:

(long)address |= 1L << bit

� void SET(void *address, uint bit)

Sets the specified bit at memory address to 1. The bit may be from 0
to 31. Dynamic C will attempt to expand this call inline. This is
equivalent to the following expression:

(long)address |= 1L << bit

� void res(void *address, uint bit)

Clears specified bit at memory address to 0. bit may be from 0 to
31. Use RES (upper case) for inline expansion of this call. This is
equivalent to the following expression:

(long)address &= ~(1L << bit)

� void RES(void *address, uint bit)

Clears specified bit at memory address to 0. bit may be from 0 to
31. Dynamic C will attempt to expand this call inline. This is equiva-
lent to the following expression:

(long)address &= ~(1L << bit)

� uint IBIT(uint port, uint bit)

Reads the I/O port and returns the value of the specified bit. The bit
may be from 0 to 7. The port may be an internal Z180 register, or it
may access external hardware. Refer to your controller reference
manual for a list of I/O ports. The function returns 1 if the specified
bit is set, and 0 if the bit is clear.

� void ISET(uint port, uint bit)

Sets the specified bit of the I/O port to 1. The bit may be from 0 to
7. The port may be an internal Z180 register, or it may access external
hardware. The function generates code like the following:

in a,(c)
set bit,a
out (c),a

Refer to the controller reference manual for a list of I/O ports.

Function Reference General Support Libraries s 1-5

� void IRES(uint port, uint bit)

Resets the specified bit of the I/O port to 0. The bit may be from 0 to
7. The port may be an internal Z180 register, or it may access
external hardware. The function generates code like the following:

in a,(c)
set bit,a
out (c),a

Refer to the controller reference manual for a list of I/O ports.

� void hitwd()

�Hits� the watchdog timer, postponing a hardware reset for approxi-
mately 1.2�1.6 seconds (the value depends on hardware). Unless the
watchdog timer is disabled, the program must call this function
periodically. Otherwise, the controller resets automatically. This
allows the controller to recover from errors that cause the program to
enter an infinite loop. If the virtual driver is enabled, it will call hitwd
in the background but provide virtual watchdogs in its place. See
VdWdogHit for more information. For information about setting
jumpers to enable/disable the watchdog (not available on all boards),
refer to the controller reference manual.

� int wderror()

Determines if the previous reset was caused by the watchdog timer.
This feature is not available on all boards. Refer to the controller
reference manual for more information.

The function returns a positive non-zero value if the watchdog caused
the last reset and zero if not. It returns a negative value if the feature is
not supported.

� void intrmode_0()

Sets Z180 interrupt mode to 0. The default mode for Dynamic C is
Mode 2. Do not select another mode unless the interrupts for all
peripheral devices using Mode 2 interrupts have been disabled.

� void intrmode_1()

Sets Z180 interrupt mode to 1. The default mode for Dynamic C is
Mode 2. Do not select another mode unless the interrupts for all
peripheral devices using Mode 2 interrupts have been disabled.

The function returns None.

� void intrmode_2()

Sets Z180 interrupt mode to 2. This is the default mode for
Dynamic C. Do not select another mode unless the interrupts for all
peripheral devices using Mode 2 interrupts have been disabled.

Dynamic C 5.x1-6 s General Support Libraries

� void runwatch()

Allows Dynamic C to update watch expressions. Calling runwatch
periodically enables evaluation of watch expressions while the program
is running. Watch expressions are always evaluated when the program
is stopped.

� int kbhit()

Detects keystrokes in the Dynamic C STDIO window. The function
returns non-zero if a key has been pressed, and zero otherwise.

� void exit(int exitcode)

Stops the program and returns exitcode to Dynamic C. Dynamic C
uses code values above 128 for run-time errors. When not debugging,
this function causes a watchdog time-out if the watchdog is enabled.

The function does not return.

� uint sysclock()

Returns the system clock speed in units of 1200 Hz. Some common
clock speeds and the corresponding sysclock values are listed below.

6.144 MHz 0x1400 (5120) 9.126 MHz 0x1E00 (7680)
12.288 MHz 0x2800 (10,240) 18.432 MHz 0x3C00 (15,360)

The function returns clock speed / 1200.

� int powerlo()

It is possible for the supply voltage to drop low enough to generate a
power-fail interrupt, but then return to normal without ever dropping
low enough to reset the board. Call this routine from an NMI (power-
fail) interrupt handler to determine if power has returned. Refer to the
controller reference manual to find out whether this feature is sup-
ported. The function returns 1 if voltage is below the NMI level, and 0
otherwise.

MATH.LIB
The Z-World standard library contains floating-point functions in addition
to I/O functions. Normal mathematical limitations apply to these func-
tions, and any function generating a value outside the accepted floating-
point range (about 1038 to �1038) will result in an overflow error. Infinity is
defined as INF in DC.HH.

Trigonometric functions such as tan(x) generally accept arguments in
radians. Certain trig functions may fail if their argument is too large. Any
angle may be normalized to fall within the range [�π, π] without loss of
accuracy.

Function Reference General Support Libraries s 1-7

� int abs(int x)

Computes the absolute value of an integer argument.

� float acos(float x)

Computes the arccosine of x. The value of x must be between �1 and
+1. If x is out of bounds, the function returns 0 and signals a domain
error.

� float acot(float x)

Computes the arccotangent of x. The value of x must be between �INF
and +INF.

� float acsc(float x)

Computes the arccosecant of x. The value of x must be between �INF
and +INF.

� float asec(float x)

Computes the arccosecant of x. The value of x must be between �INF
and +INF.

� float asin(float x)

Computes the arcsine of x. The value of x must be between �1 and +1.
If x is out of bounds, the function returns 0 and signals a domain error.

� float atan(float x)

Computes the arctangent of x. The value of x must be between �INF
and +INF.

� float atan2(float y, float x)

Computes the arctangent of y/x. If both y and x are zero, the function
returns 0 and signals a domain error. Otherwise the result is returned as
follows:

angle x ≠ 0, y ≠ 0
PI/2 x = 0, y > 0
�PI/2 x = 0, y < 0
0 x > 0, y = 0
PI x < 0, y = 0

� float ceil(float x)

Returns the smallest integer greater than or equal to x.

� float cos(float x)

Computes the cosine of x.

Dynamic C 5.x1-8 s General Support Libraries

� float cosh(float x)

Computes the hyperbolic cosine of x. If |x| > 89.8 (approx.), the
function returns INF and signals a range error.

� float deg(float x)

Returns angle in degrees for angle x given in radians.

� float rad(float x)

Returns angle in radians for angle x given in degrees.

� float exp(float x)

Returns the value of ex. If x > 89.8 (approx.), the function returns INF
and signals a range error. If x < �89.8 (approx.), the function returns 0
and signals a range error.

� float fabs(float x)

Computes the absolute value of x. The function returns x if x ≥ 0;
otherwise it returns �x.

� float floor(float x)

Computes the largest integer less than or equal to the given number.

� float fmod(float x, float y)

Returns the remainder of x with respect to y, that is, the remaining part
of x after all multiples of y have been removed. For example, if x is
22.7 and y is 10.3, the integral division result is 2. Then the remainder
= 22.7 � 2 × 10.3 = 2.1.

� float frexp(float x, int *n)

This function splits x into a fraction and exponent (f × 2n). The
function returns the exponent in the integer *n and the fraction (be-
tween 0.5 and 0.999...) as the function result.

� long labs(long x)

Computes the absolute value of long integer x. The function returns x
if x ≥ 0; otherwise it returns �x.

� float ldexp(float x, int n)

Computes x*(radix**n), where n is an integer and 0.5 ≤ x < 1.0.

� float log(float x)

Computes the natural logarithm (base e) of x. The function returns
�INF and signals a domain error when x ≤ 0.

� float log10(float x)

Computes the base 10 logarithm of x. The function returns �INF and
signals a domain error when x ≤ 0.

Function Reference General Support Libraries s 1-9

� float modf(float x, int *n)

Splits x into an integer part and fractional part, f + n, where n is the
integer and f satisfies | f | < 1.0. The function returns the integer part in
*n and returns the fractional part as the function result.

� float poly(float x, int n, float c[])

Computes a polynomial value by Horner�s method. The term x is the
variable of the polynomial, n is the order of the polynomial, and c is an
array containing the coefficients of each power of x . For example, for
the fourth-order polynomial

10x4 � 3x2 + 4x + 6

n would be 4 and the coefficients would be

c[4] = 10.0
c[3] = 0.0
c[2] = �3.0
c[1] = 4.0
c[0] = 6.0

� float pow(float x, float y)

Returns xy.

� float pow10(float x)

Returns 10x.

� float sin(float x)

Computes the sine of x.

� float sinh(float x)

If x > 89.8 (approx.), the function returns INF and signals a range error.
If x < �89.8 (approx.), the function returns �INF and signals a range
error.

� float sqrt(float x)

Computes the square root of x.

� float tan(float x)

Return the tangent of x, where �8×PI ≤ x ≤ +8×PI. If x is out of
bounds, the function returns 0 and signals a domain error. If the value
of x is too close to a multiple of 90° (PI / 2) the function returns INF
and signals a range error.

� float tanh(float x)

Returns the hyperbolic tangent of x. If x > 49.9 (approx.), the function
returns INF and signals a range error. If x < �49.9 (approx.), the
function returns �INF and signals a range error.

Dynamic C 5.x1-10 s General Support Libraries

� float _pow10(int exp)

Computes integral powers of 10 (10exp).

STDIO.LIB
The following functions address the standard I/O window in Dynamic C,
which is used for debugging.

� char *gets(char* s)

This function waits for a string terminated by a �CR� (carriage return)
to be typed. It does not return until a �CR� is typed in the STDIO
window. However, the string returned is null terminated. The function
returns the typed string at the location identified by the pointer s.
Make sure the storage is big enough for the string and that only one
process calls this function at a time.

� char getchar(void)

This function waits (in an idle loop) for a character to be typed from
the STDIO window in Dynamic C. Make sure only one process calls
this function at a time.

� int puts(char *s)

This function writes the string, identified by pointer s, in the STDIO
window in Dynamic C. The STDIO window will interpret any escape
code sequences contained in the string. Make sure only one process
calls this function at a time. The function returns 1 if successful.

� void putchar(int ch)

Writes a single character (the lower 8 bits of ch) to STDIO. Make sure
only one process calls this function at a time.

� void sprintf(char *buffer, char *format, ...)

An analog of standard function printf, this function takes a �format�
string (*format), and a variable number of value arguments to be
formatted. It formats the arguments and places the formatted string in
*buffer. Make sure that:

1. There are enough arguments after format to fill in the format
parameters in the format string.

2. The types of arguments after format match the format fields in
format.

3. buffer is large enough to hold the longest possible formatted
string.

Function Reference General Support Libraries s 1-11

For example,

sprintf(buffer,�%s=%x�,�Variable x�,256)

should put the string �Variable x=100� into buffer. This function can
be called by processes of different priorities.

The functions printf() and sprintf() are not reentrant. The
function doprnt implements printf and sprintf, and uses the
character output function putc specified by the programmer. These
functions accept format strings and a variable number of parameters
whose values are to be printed according to the format, for example,

printf(�Summary for %s:\n�, person);
printf(� Age: %d, Income: $%8.2f�, age, income);

The first statement prints a character string. The %s in the format tells
the function where and how to print the character string.

The second statement prints two numbers, an integer age and a float
income. The %d in the format tells the function where and how to print
the integer: as a decimal string, free-formatted. The %8.2f in the
format tells the function to print income as a floating value, with a field
width of eight characters and two decimal places.

Summary for Sally Forth:
Age: 39, Income: $39587.02

The complete syntax of a field code is:

%[+|-][width [.precision]]letter

where

+ makes the value right-justified in its field, if a field width is specified.

- makes the value left justified in its field, if a field width is specified.

width is the field width. If not specified, the field width varies accord-
ing to the value.

precision for floating-point values, that is, the number of digits to the
right of the decimal.

letter selects the interpretation of the data according to the following
list.

d decimal conversion (expects type int)

o octal conversion

x hex conversion

u unsigned decimal conversion (expects type uint)

c single char representation (expects type char)

s string (with null termination)

Dynamic C 5.x1-12 s General Support Libraries

e mantissa/exponent form of floating point (expects type float)

f normal floating point (expects type float)

g use e or f conversion, whichever is shorter. (expects float)

l decimal conversion (expects type long)

� void printf(char *fmt, ...)

This standard function accepts a variable number of value arguments,
composes a formatted string from the values, and writes the formatted
string to the STDIO window. Refer to the description of sprintf for
details. Only one process should use this function at any time.

� void doprnt(int(*put)(),char *fmt,void* arg1)

This is the support routine behind all ..printf routines. Passes a
function put that outputs one byte. It will be called whenever doprnt
outputs a character. The term fmt is the format string that specifies the
output. The term arg1 points to the first parameter to be used by the
formatted string. The interpretation of the parameters depends on the
format fields in the format string. This routine causes many math
functions to be compiled and downloaded. This routine can be called
from processes of different priorities.

� char *gtoa(ulong num, char *ibuf)

This function uses _gltoa to output an unsigned long integer, num, to
the character array *ibuf. The function returns a pointer to ibuf.

� char *ltoa(long num, char *ibuf)

This function uses _gltoa to output a signed long integer, num, to the
character array *ibuf. The function returns a pointer to ibuf.

� int gtoan(ulong num)

This function returns the number of characters required to display a
unsigned long integer, num.

� int ltoan(long num)

This function returns the number of characters required to display a
signed long integer, num.

� void pint(char flag, char code, int width,
int(*put)(), int value)

Writes a short integer value as a decimal string according to the user-
specified single-character output procedure put. The term width
specifies field width. If zero is specified, the field will be as wide as
needed to represent value. The flag, if �-�, indicates that the field
is left-justified. Otherwise, it is right-justified. If code is �d�, the

Function Reference General Support Libraries s 1-13

function treats value as a signed integer, otherwise as an unsigned integer.
The function prints all asterisks if the value does not fit in the field
specified.

� void plint(char left, char code, int n1,
int(*put)(), long num)

This function has the same effect as pint, but accepts and prints a long
integer.

� int ftoa(float f, char *buf)

Converts the floating pointer number f to a character string *buf. The
string will be no longer than 12 characters long. The character string
only displays the mantissa up to 12 digits, with no decimal points. The
function returns the exponent (base 10) that should be used to compen-
sate for the missing decimal point. For example,

ftoa(1.0,buf)

generates the string �1000000000�, and returns �10. If f is 45.678,
ftoa will generate the character string �45678� and return the integer
exponent �3, indicating 45678 × 10�3.

� void plhex(char left, int n1, int(*put)(),
long num)

Writes a long (signed or unsigned) integer in hex format. The term
left specifies the padding character that goes to the left side of the
actual number. If left is �-�, white space is used as a padding
character. The term n1 is the expected length of the output. Asterisks
will be written if num requires more width than n1. Otherwise, the
padding character left will be used to make up the remaining spaces.
Pass a function (put) that will output one character. The function put
should take a character argument. The term num is the number to be
converted and output. This function can be called from processes of
different priorities.

� void phex(char left, int n1, int(*put)(),
int num)

Similar to plhex. This function prints the hexadecimal representation
of a short integer (signed or unsigned). Refer to the description of
plhex for details.

� void pflt(char flag, char code, int width, int
digits, int(*put)(), float value, int prec)

Prints a formatted floating-point value using the specified single-
character output procedure put. The programmer has quite a bit of
control over format.

Dynamic C 5.x1-14 s General Support Libraries

The flag, if �-�, indicates that the output field is left-justified. If it is
�0�, the field is right-justified and zero-filled. Otherwise the field is
right-justified and space-filled.

The code can be �e�, �f�, or �g�. These formats correspond to
programming conventions established many years ago. E format
displays a mantissa with �e� and an exponent. F format is standard
decimal format. G format allows the compiler to decide whether to use
�e� or �f� format.

The term width is the field width. If zero is specified, the field will be
as wide as needed to represent value. The terms prec and digits
govern the number of significant digits to print. If prec is non-zero
(true), the function prints digits significant digits. Otherwise, the
function prints six significant digits.

The function prints all asterisks if the value does not fit in the field
specified.

� char *itoa(int value, char *buf)

Converts signed integer value to a character string in *buf, with a
minus sign in first place, when appropriate. The function suppresses
leading zeros, but leaves one zero digit for value = 0. The maximum
value is 32767. The function returns a pointer to the end (the null
terminator) of the string in *buf.

� char *utoa(uint value, char *buf)

Converts unsigned integer value to a character string in *buf. The
function suppresses leading zeros, but leaves one zero digit for value
= 0. The maximum value is 65535. The function returns a pointer to
the end (the null terminator) of the string in *buf.

� char *htoa(int value, char *buf)

Converts integer value to hex character string in *buf. Leading zeros
are not suppressed. The function returns a pointer to the end (null
terminator) of the string in *buf.

� char *hltoa(long value, char *buf)

Converts long integer value to hex character string in *buf. Leading
zeros are not suppressed. The function returns a pointer to the end
(null terminator) of the string in *buf.

� char outchrs(char c, int n,int(*put)())

Uses single-character output function put to output n times the
character c . The function put should take a character parameter.

The function returns the value of character c.

Function Reference General Support Libraries s 1-15

� char *outstr(char *buf, int(*put)())

Outputs the string *buf using calls to single-character output function
put. The function put should take a character parameter. The
function returns a pointer to the end (null terminator) of the string in
*buf.

STRING.LIB
The following are standard C string functions.

� float atof(char *sptr)

Converts a character string to a floating-point value. The initial �white
space� is ignored. This is ANSI compatible. The function returns the
converted value.

� int atoi(char *sptr)

Converts a character string to an integer value. The initial �white
space� is ignored. This is ANSI compatible. The function returns the
converted value.

� int atol(char *sptr)

Converts a character string to a long integer value. The initial �white
space� is ignored. This is ANSI compatible. The function returns the
converted value.

� void *memset(void* dst, byte ch, uint n)

Sets the memory starting at dst to n occurrences of the byte ch. The
function returns a pointer to the address following the last byte written.

� char *strcpy(char *dst, char *src)

Copies string *src to string *dst. The function copies at least one
byte (the null). The function returns a pointer to *dst.

� char *strncpy(char *dst, char *src, uint n)

Copies at most n characters from *src to *dst. May terminate earlier
if null terminator is encountered in *src before n characters. The null
terminator is not copied if n is encountered before null terminator (i.e.,
the programmer should take care of length-delimited cases). The
function returns a pointer to *dst.

� char *strcat(char *dst, char *src)

Concatenates string *src to the end of *dst. The destination string
must be large enough to hold the additional characters. The function
returns a pointer to *dst.

Dynamic C 5.x1-16 s General Support Libraries

� char *strncat(char *dst, char *src, uint n)

Concatenates up to n characters from *src to the end of *dst. A null
terminator is appended to the end of *dst if n characters are copied
before encountering the null terminator in *src. The function returns a
pointer to *dst.

� int strcmp(char *a, char *b)

Compares two strings. The function returns the relative difference
between the first pair of differing characters, that is, the function result
is

= 0 if all characters are equal
< 0 if a

i
 < b

i

> 0 if a
i
 > b

i
.

These functions are useful for sorting.

� int strncmp(char *a, char *b, uint n)

Compares two strings up to n characters. The function return is similar
to that of strcmp.

� char* strchr(char *src, char ch)

Scans *src for the first occurrence of ch. The function returns a
pointer to the first occurrence of ch in *src. It returns a null pointer if
ch is not found.

� char* strrchr(char *src, int ch)

Similar to strchr, except this function searches in reverse from the
end of *src to the beginning. The function returns a pointer to the last
occurrence of ch in *src. It returns a null pointer if ch is not found.

� uint strspn(char *src, char *set)

Returns the length of the maximum initial segment of *src, which
consists entirely of characters in *set.

� uint strcspn(char *src, char *set)

Returns the length of the maximum initial segment of *src, which
consists of characters not in *set.

� char* strpbrk(char *s1, char *s2)

Locates the first occurrence within *src of any character in *set. The
function returns a pointer to the occurrence. The function returns a null
pointer if none is found.

� void* memcpy(void *dst, void *src, uint n)

Copies n characters from memory *src to memory *dst. Overlap is
handled correctly. The function returns the *dst pointer.

Function Reference General Support Libraries s 1-17

� void* memchr(void* src, int ch, uint n)

Searches up to n characters in buffer *src for character ch. The
function returns a pointer to first occurrence of ch if found within n
characters. Otherwise returns a null pointer.

� int strlen(char *s)

Calculates the length of string *s, not including the terminating null.
The function returns the number of bytes in the string.

� int toupper(int c)

Converts character c to its upper-case equivalent.

� int tolower(int c)

Converts character c to its lower-case equivalent.

� int islower(int c)

Checks whether c is a lower-case character. The function returns non-
zero if so, and zero otherwise.

� int isupper(int c)

Checks whether c is an upper-case character. The function returns non-
zero if so, and zero otherwise.

� int isdigit(int c)

Checks whether c is an ASCII digit (0�9). The function returns non-
zero if so, and zero otherwise.

� int isxdigit(int c)

Checks whether c is a hexadecimal digit (0�9, a�f,. A�F). The function
returns non-zero if so, and zero otherwise.

� int ispunct(int c)

Checks whether c is a punctuation mark. The function returns non-zero
if so, and zero otherwise.

� int isspace(int c)

Checks whether c is a blank, tab, new line, or form feed. The function
returns non-zero if so, and zero otherwise.

� int isprint(int c)

Checks whether c is printable. The function returns non-zero if so, and
zero otherwise.

� int isalpha(int c)

Checks whether c is an ASCII letter. The function returns non-zero if
so, and zero otherwise.

Dynamic C 5.x1-18 s General Support Libraries

� int isalnum(int c)

Checks whether c is alphanumeric (A to Z, a to z and 0 to 9). The
function returns non-zero if so, and zero otherwise.

� int isgraph(int c)

Checks whether c is a visible printing character. The function returns
non-zero if so, and zero otherwise.

� int iscntrl(int c)

Checks whether c is a control character (less than 20H). The function
returns non-zero if so, and zero otherwise.

� float strtod(char *s, char **tailptr)

Converts a string to a floating-point value. The term *s is the string to
convert, and **tailptr is a pointer to a pointer to a character.
**tailptr is assigned the stopping point of conversion in *s (so
continuation is possible at **tailptr). If no conversion takes place,
**tailptr returns 0L. The initial �white space� is ignored. This
function is ANSI compatible. The function returns the converted value.

� long strtol(char *s, char **tail, int base)

Converts a string to a long integer value. The term *s is the string to
convert, **tail is assigned the last position of the conversion, and
base indicates the radix of conversion, which may be from 2 to 36.
When base is 0, the function converts according to C syntax. For
example, if the string starts with �0x,� the function will interpret the
string in hexadecimal format. The function skips the initial �white
space.� The function sets the tail pointer **tail to the character
position at which the conversion failed or finished. The next conver-
sion may resume at the location specified by **tail. If no conversion
takes place, **tail returns 0L. The initial �white space� is ignored.
This function is ANSI compatible. The function returns the converted
value.

Be careful with the double pointer.

� char *strtok(char *src, char *brk)

Scans *src for tokens separated by delimiter characters specified in
*brk. The first call takes a non-null *src. Subsequent calls with a
null pointer for *src continue to search for tokens in the string. The
function returns a pointer to the first character of the token. If it also
finds a terminating delimiter, it changes it to a null character so that the
token is terminated. This function modifies the source string. The
function returns a null pointer if it does not find a token.

Function Reference General Support Libraries s 1-19

� char *strstr(char *string, char *target)

Returns a pointer to the first occurrence of substring *target in
*string. The function returns a null pointer if *target is not found
in *string. The function returns the pointer string if the target is null.

� int memcmp(void *a, void *b, uint n)

Compares two memory spaces a and b and returns the relative differ-
ence between the first pair of differing bytes, if any. Thus, the function
result is

= 0 if all bytes are equal
< 0 if a

i
 < b

i

> 0 if a
i
 > b

i
.

The function will stop comparing after n bytes.

SYS.LIB
These are miscellaneous support functions.

� int setjmp(jmp_buf env)

Stores the PC (program counter), SP (stack pointer) and other informa-
tion about the current state into env. The saved information can be
restored by executing longjmp. A typical program appears below.

switch(setjmp(e)){
case 0: // first time

fx(); // fx() may take a longjmp
break; // if we get here, fx() was successful

// if we get here, fx() must have called longjmp
case 1:

do exception handling
break;

// similar to case 1, but different exception code.
case 2:
...

}
f(){

g()
...

} // Here, exception code 2 causes
g(){ // jump back to setjmp occurrence,
 ... // but causes setjmp to return 2.

longjmp(e,2); // Therefore, case 2 in the switch
} // statement executes

Dynamic C 5.x1-20 s General Support Libraries

The function returns zero when it is executed. After longjmp is
executed, the program counter, stack pointer, etc., are restored to the
state when setjmp was executed the first time. However, this time,
setjmp returns whatever value is specified by the longjmp statement.

� void longjmp(jmp_buf env, int value)

Restores the stack environment saved in env. The integer value passed
to longjmp is returned as the function result of setjmp when the long
jump is taken. See the description of setjmp for usage.

� void *malloc(uint size)

Allocates a dynamic block of size bytes. Call bfree before using
*malloc (the compiler automatically calls bfree before main if some
heap space is reserved in the logical memory options). Because
*malloc uses a global free list pointer, *malloc must be preempted
by another *malloc. Heap space must be allocated using the logical
memory option from the Options menu in order to use *malloc. (The
default is a heap size of 0.) The function returns a pointer to the
beginning of the allocated block, or a null pointer if space is unavail-
able.

� uint bfree(void *lo, void *hi)

Defines a block of RAM, from *lo to *hi inclusive, as available for
dynamic allocation. The function returns non-zero if successful, and
zero if not.

� int free(void *f)

Returns block (*f) of dynamically allocated RAM to the free list. The
function returns non-zero if successful, and zero if not.

� int pack(void)

Reduces fragmentation of dynamic memory by linking adjacent free
blocks. The function returns the total number of free bytes.

� void *calloc(uint count, uint size)

Allocates memory from the �heap� for a space of count elements of
size bytes. The function finds a block of memory on the free list,
trims it to the right size, and returns a pointer to the block. The
function initializes the space to all zeros. The function returns a pointer
to the allocated block, and returns a null pointer if it cannot find a
block.

� void swap(byte a[], byte b[], int s)

Swaps array a with array b, byte-for-byte, for the first size bytes.

Function Reference General Support Libraries s 1-21

� int qsort(void *base, uint n, uint s,
int(*cmp)())

Performs a �quicksort� with center pivot, stack control, and easy-to-
change comparison method. The term *base points to the base of an
array (of fixed-size structures) to be sorted. The value n is the number
of elements to be sorted, and s is the size of each element in the array.
The programmer must supply a comparison function cmp that indicates
the order of two structures. The comparison function take pointers to
two structures

int cmp(*p, *q)

and returns �1 if the first is less than the second, 0 if the structures are
equal, and 1 if the first is greater than the second one.

The qsort function returns zero if the operation is successful, and
non-zero otherwise.

� char *realloc(void *ptr, uint size)

Allocates a new block of size size, copies the data from the old block
(*ptr) to the new block, frees the old block, and returns a pointer to
the new block. If the function fails to allocate a new block, the
function result is a null pointer.

� isr_ptr getvect(uint intrno)

Gets the address of the handler of interrupt number intrno. For this
function, number must be even and less than 255. The function returns
the address of the handler. The type isr_ptr is a pointer to a function
that returns void and takes no arguments.

� void setvect(uint intrno, isr_ptr isr)

Sets a new handler isr for interrupt number intrno. The term
intrno must be even and less than 255. The type isr_ptr is a
pointer to a function that returns void and takes no arguments.

� int iff()

Checks whether the interrupt flag is on. The function returns 1 if the
interrupt flag is on, and 0 otherwise.

� void setireg(char value)

Sets the Z180 interrupt register with the upper 8 bits of the specified
16-bit value.

� char readireg()

Returns the value of the Z180 interrupt register as the upper 8 bits of
the returned value. The lower 8 bits are set to zero.

Dynamic C 5.x1-22 s General Support Libraries

� void CoBegin (CoData *cd)

CoBegin initializes a CoData structure. The INIT flag is set, but the
STOPPED flag is cleared.

� void CoReset (CoData *cd)

CoReset resets a CoData structure. The STOPPED and INIT flags
are both set.

� void CoPause (CoData *cd)

CoPause pauses a CoData structure. The STOPPED flag is set, but
the INIT flag is cleared.

� void CoResume (CoData *cd)

CoResume resumes a CoData structure. The STOPPED and INIT
flags are both cleared.

� int isCoDone (CoData *cd)

The function isCoDone returns true (1) if both the STOPPED and
INIT flags are set. It returns 0 otherwise.

� int isCoRunning (CoData *cd)

The function isCoRunning returns true (1) if the STOPPED flag is
not set. It returns 0 otherwise.

� void _prot_init()

Performs super initialization. The function initializes internal data
needed for recovery of protected variables after a crash. To ensure
that the protection mechanism works, call this function once in a
program before any protected variables are set.

� void _prot_recover()

Performs recovery of a partially completed assignment to a pro-
tected variable. Call this function after a power failure or a similar
situation that does not lose memory.

� void reload_vec(int vector, int(*function)())

Loads an interrupt service routine to specified vector location at run
time.

PARAMETERS: vector is the interrupt vector to be served.

*function is the address of the interrupt service routine.

reload_vec writes to the flash memory when executed on
a controller with a flash EPROM. Be careful not to have
this function call write repeatedly to the same flash
EPROM address since the flash EPROM has a maximum
of about 10,000 writes.

!

Function Reference General Support Libraries s 1-23

XMEM.LIB
These are extended memory functions.

� ulong xmadr(void* address)

Converts logical address address to a physical address according to
the memory mapping registers. Uses BBR, CBR and CBAR to
determine the physical address of any given logical address. The
function returns the physical address.

� char xgetchar(long address)

Gets a character whose address is specified by the physical address
(20 bits). The function returns the character value.

� int xgetint(ulong address)

Gets an integer whose address is specified by the physical address
(20 bits). The function returns the integer value.

� ulong xgetlong(ulong address)

Gets a long integer whose address is specified by the physical address
(20 bits). The function returns an unsigned long integer value.

� float xgetfloat(ulong address)

Gets a floating-point value whose address is specified by the physical
address (20 bits). The function returns the floating-point value.

� void xputchar(long address, char value)

Stores a character value at a physical address (20 bits).

� void xputint(long address, int value)

Stores an integer value at a physical address (20 bits).

� void xputlong(long address, long value)

Stores a long-value integer at a physical address (20 bits).

� void xputfloat(ulong address, float value)

Stores a float value at a physical address (20 bits).

� void xmem2root(ulong src, void* dst, uint n)

Copies a block of n bytes from extended memory src to root *dst.
The address src is a physical address (20 bits).

� void root2xmem(void *src, ulong dst, uint n)

Copies a block of n bytes from root memory *src to extended memory
dst. The address dst is a physical address (20 bits).

Dynamic C 5.x1-24 s General Support Libraries

� uint xstrlen(ulong address)

Returns the length of the string at the extended memory address. The
address is a physical address (20 bits).

� uint x_makadr(ulong address)

Computes the logical address from a physical address. The function
also sets CBR to new page number and returns the logical address in
HL. The old CBR is saved in af� (alternative register pair A and F).
Never call this function from xmem functions. Z-World also recom-
mends that this function not be called from C functions since it is easy
to forget that a C function may be placed in xmem automatically.

� ulong a32_24(ulong address)

Converts the 20-bit physical address (in a 32-bit integer) to a
segmented (24-bit) address. Segmented addresses have the following
structure.

8-bit CBR 16-bit Z180 address

� ulong a24_32(ulong address)

Converts the 24-bit segmented address into a 20-bit physical address
(in a 32-bit integer). The segment (second byte of the segmented
address) is only effective if address is in xmem, that is, address ≥
0xE000. Otherwise, the segment is ignored. Both the CBAR and BBR
registers in the MMU are used to calculate the outcome. The function
returns an unsigned long integer that holds the 20-bit physical address
equivalent to the extended logical address supplied.

Function Reference Multitasking Libraries s 2-1

MULTITASKING LIBRARIES

The multitasking libraries described in Chapter 2 include the real-time
kernel, the simplified real-time kernel, and the virtual driver.

Dynamic C 5.x2-2 s Multitasking Libraries

RTK.LIB
This library is the full real-time kernel. The simplified real-time kernel
(SRTK) is described later.

� int request(uint tasknum)

Requests the kernel to run the task specified by tasknum immediately.
If a request for the task is pending, this call has no further effect. The
specified task will be run on a future tick when priorities allow.

� void run_every(int tasknum, int period)

Requests the kernel to run the task specified by tasknum every
period ticks. The first request comes after period ticks. This is
exact and no ticks will be gained or lost in the period.

� void run_after(int tasknum, long delay)

Requests the kernel to run the task specified by tasknum after delay
ticks have occurred.

� void run_at(int tasknum, void* time)

Requests the kernel to run the task specified by tasknum when the
time is greater than or equal to the time specified by the pointer time.
The time pointer points to a 48-bit number (stored least significant byte
first) that is the number of ticks since init_kernel was called.

� void run_cancel(int tasknum)

Cancels any pending requests for the task specified by tasknum.

� void gettimer(void* time)

Returns the current 48-bit time to the 6-byte area to which time points.

� void run_timer()

This function must be called by an interrupt routine between 10 and
500 times per second for the real-time kernel to operate. Each call to
this function constitutes one kernel �tick,� so all time values used by
other kernel functions depend on the rate at which this function is
called.

� int comp48(void* time1, void* time2)

Compares two 48-bit time values. The function returns

�1 for time1 < time2,
 0 for time1 = time2, and
+1 for time1 > time2.

Function Reference Multitasking Libraries s 2-3

� void rkernel()

This is the real-time kernel core, and is called by run_timer. This
function will return immediately if there is no change to the task
currently executing. If it decides to change tasks based on service
requests such as run_every or run_after, then it will not return until
the new task either returns or calls suspend.

� void suspend(uint ticks)

This routine must be called only from within a given task. It allows the
task to suspend itself for the specified number of ticks, after which it
will continue to be requested automatically. Execution resumes at the
statement following the call to suspend.

If ticks is 0, then the suspension is for an indefinite period of time,
until the task is again requested by some outside agent, such as a call to
run_every(). Using a while statement is the usual method of using
suspend to wait for an external event:

while(!event()) suspend(20);

This example checks for the event every 20 ticks until the event takes
place, at which point execution continues. The suspension can be up to
65,535 ticks.

� int init_kernel()

Initializes the real-time kernel. This function takes no parameters.
However, the calling program must contain certain definitions.

Functions to be run as tasks must be declared with no parameters and
return an integer. A global array of task pointers, Ftask, must be
declared with the first task (Ftask[0]) given the highest priority and
the last task the lowest priority. #define NTASKS to be the number of
tasks. Then set up a periodic interrupt with a service routine that calls
run_timer. An option is to define TASKSIZE_STORE to be the size of
the task storage area (this defaults to 50 if TASKSIZE_STORE is not
defined).

All of the above definitions must occur in the source code before any
reference to real-time kernel functions.

Dynamic C 5.x2-4 s Multitasking Libraries

SRTK.LIB
These are the simplified real-time kernel functions.

� void srtk_hightask()

This is the routine called every 25 ms by the SRTK to run high-priority
tasks. The one in the library is a dummy routine.

To have a user-defined SRTK high-priority task, simply write one with
the same name. Specify #nointerleave to guarantee that the user-
defined high-priority task is compiled.

� void srtk_lowtask()

This routine is called every 100 milliseconds by the SRTK to run low-
priority tasks. The one in the library is a dummy routine.

To have a user-defined SRTK high priority task, simply write one with
the same name. Specify #nointerleave to guarantee that the user-
defined high-priorirty task is compiled.

� void init_srtkernel()

Initializes the simplified real-time kernel. Once this is called, periodic
interrupts will automatically invoke the SRTK high- and low-priority
tasks.

Initialize the virtual driver and #define RUNKERNEL 1 before calling
this function.

VDRIVER.LIB
These are the virtual driver functions. The virtual driver provides a
number of different services, such as the virtual watchdog timers and a
�fastcall� very high priority task.

The virtual driver also provides delay routines for use by waitfor
statements DelayMs, DelaySec, and DelayTick.

� void VdInit()

Initializes the virtual driver. The Z180 PRT1 clocks the virtual driver
every 1/1280 second. The virtual driver clocks the RTK or SRTK
every 32 ticks (or 25 milliseconds) if #define RUNKERNEL is defined.

For fastcall service, the virtual driver clocks vd_quickloop every n
ticks (1/1280 seconds) where 1 ≤ n ≤ 255. vd_quickloop must be
defined and the definition will override the dummy version in the
library. (#define VD_FASTCALL 1 must be defined as well.)

VdInit must be called before the program can use the SRTK, virtual
watchdogs, the waitfor delay routines or fastcall.

Function Reference Multitasking Libraries s 2-5

VdInit makes a call to _GLOBAL_INIT. Therefore, a user-prepared
program does not have to.

� int VdGetFreeWd(byte count)

Returns a free virtual watchdog timer and starts it counting down from
count. Virtual watchdog timers decrement every 25 milliseconds (32
virtual driver ticks). When a virtual watchdog reaches 0, it resets the
processor. Once a virtual watchdog timer is active, the software should
reset the timer periodically with a call to VdWdogHit. The function
returns the integer ID of an unused virtual watchdog timer.

If count ≤ 2, VdWdogHit must be called every 25 milliseconds. If
count = 255, hit the watchdog at least every 6.375 seconds.

� void VdWdogHit(int wd)

Resets virtual watchdog timer to n counts where n was the argument to
the call to VdGetFreeWd that obtained the virtual watchdog wd. The
function returns 0 if wd is out of range, and 1 if successful.

� int VdReleaseWd(int wd)

Deactivates a virtual watchdog wd and returns it to the pool of watch-
dogs. The function returns 0 if wd is out of range, and 1 if successful.

� int vd_initquickloop(int n)

Initializes the �fastcall� feature of the virtual driver to run every n ticks.
The value of n must be from 0 to 255. If n = 0, it turns off fastcall.
Use #define VD_FASTCALL 1, call VdInit, then call this function.
(VdInit initializes fastcall as off.) The function returns 1 for success,
0 for a bad n value.

� void VdAdjClk()

Synchronizes the software second timer used by DelaySec with the
real-time clock. Call this function once a day or so to keep clocks in
sync.

� vd_fastcall()

Is called by the virtual driver to run an ultra-fast thread every n ticks,
where n is the argument to vd_initquickloop()and should be
between 0 and 255. Use #define VD_FASTCALL 1 to activate this
thread. n = 0 shuts off fastcall.

Dynamic C 5.x2-6 s Multitasking Libraries

Function Reference Controller Libraries s 3-1

CONTROLLER LIBRARIES

Each of the libraries described in Chapter 3 is the principal library for one
type of Z-World controller. Some of the libraries in Chapter 5 also support
particular controllers.

Dynamic C 5.x3-2 s Controller Libraries

BL1000.LIB
This function supports the BL1000 controller.

� int ad_rd8(int chan)

Reads an 8-bit value from the BL1000 A/D converter. chan is the
channel number (0�3). The return value is shifted left by 4 bits, so it
appears as a 12-bit number.

The function returns 0 to 4095 if successful, �32768 if an error
occurred.

BL11XX.LIB
These functions support the BL1100 series controllers.

� int ad_rd10(int chan)

Reads a 10-bit value from the BL1100 A/D converter. The low 3 bits
of chan specify the channel number (0�7); the fourth bit must be 0 for
bipolar mode, or 1 for unipolar mode (add 8 to the channel number for
unipolar mode). The return value is shifted left by 2 bits, so it appears
as a 12-bit number.

The function returns �2048 to 2047 if bipolar mode; 0 to 4095 if
unipolar mode; �32768 if an error occurs.

� int ad_rd12(int chan)

Reads a 12-bit value from the BL1100 A/D converter. The low 3 bits
of chan specify the channel number (0�7); the fourth bit must be 0 for
bipolar mode, or 1 for unipolar mode (add 8 to the channel number for
unipolar mode).

The function returns �2048 to 2047 if bipolar mode; 0 to 4095 if
unipolar mode; �32768 if an error occurs.

� int ad_rd10s(int chan, int count, int *buf,
uint divider)

Samples data from the BL1100 A/D converter at uniform intervals in
time. chan is the channel number (0�7), plus 8 for unipolar mode
(otherwise bipolar), count specifies the number of samples to collect,
and buf points to a buffer where the samples will be stored. divider
determines the sample rate based on the formula rate = clock/(20*di-
vider). divider should not be smaller than 36, which yields 12800
samples per second with a 9.216 MHz clock. Interrupts will be
disabled unless NODISINT is defined.

The function returns 1 if successful, 0 if the sample was missed because
divider is too small or there was an interrupt during sampling.

Function Reference Controller Libraries s 3-3

� int ad_rd12a(int chan)

Reads a 12-bit value from the BL1100 alternate A/D converter
LTC1290. The low 3 bits of chan specify the channel number (0�7);
the fourth bit must be 0 for bipolar mode, or 1 for unipolar mode (add 8
to the channel number for unipolar mode). The execution time is about
350 microseconds with a 9.216-MHz system clock. Interrupts are
disabled for about 300 microseconds.

� void wdac(int value)

Writes value to the BL1100 DAC. value should be in the range
0�4095, with an output of 2.5*value/4096 volts.

� int ad_rd(int chan)

Same as ad_rd10.

� void setctc(char nctc, char mode, char timer,
char intr)

Initializes CTC counter nctc (0�3). mode specifies one of seven
possible counter modes as follows.

0 runs the counter at sysclock/16, triggering immediately.

1 runs the counter at sysclock/256, triggering immediately.

2 sets the counter to run off of an external clock.

4 runs the counter at sysclock/16, triggering on the rising edge of
CLK/.

5 runs the counter at sysclock/256, triggering on the rising edge of
CLK/.

6 runs the counter at sysclock/16, triggering on the falling edge of
CLK/.

7 runs the counter at sysclock/256, triggering on the falling edge of
CLK/.

timer specifies the time constant to load into the counter. intr
indicates whether or not the timer should cause interrupts (non-zero
enables interrupts, zero disables interrupts).

The function returns void.

� void setdaisy(char code)

Sets the relative priority of interrupts between the three I/O units in the
KIO based on the value of code shown below.

0 disabled 4 CTC,PIO,SIO
1 SIO,CTC,PIO 5 PIO,SIO,CTC
2 SIO,PIO,CTC 6 PIO,CTC,SIO
3 CTC,SIO,PIO (system default) 7 disabled

Dynamic C 5.x3-4 s Controller Libraries

� void setled1(char value)

Turns LED #1 on if value is non-zero, off if value is zero.

BL14_15.LIB
These functions support the BL1400 series controllers.

� int Read555(uint *lapsecount)

Reads timer0 count for the amount of time it took the 555 chip to reach
∆t = 1.1RC time. The timer count is returned in *lapsecount. The
555 chip should be set previously with Set555(maxcount).

The function returns

 0 if timer0 has not timed out and the 555 chip has not reached t =
1.1RC time.

 1 if the 555 has reached t = 1.1RC time and has generated an
interrupt on INT1 and DREQ0.

�1 if timer0 has finished counting maxcount and the 555 has not
reached t = 1.1RC time.

� void Set555(uint maxcount)

Loads timer0 with maxcount and sets it to generate one interrupt.
Prepares DMA0 to receive data from timer0 TMRD0L. Prepares INT1
and DREQ0 to receive a done signal from the 555 chip. Triggers the
555 chip.

� void Charger1302(int on_off, int diode, int
resistor)

Turns the trickle charger on the DS1302 chip on or off. diode is 1 or
2 for the number of diodes from VCC2 to VCC1. resistor is 2, 4 or
8 for the resistance (in kΩ) across the line.

� int ReadTime1302(struct tm* thistime)

Reads real-time clock (RTC) data from DS1302 to the time structure
pointed to by thistime. The function returns 0 if successful, �1 if the
RTC is in halt mode.

� int WriteTime1302(struct tm* thistime)

Writes time structure data pointed to by thistime to the real-time
clock (RTC) of the DS1302. The function returns 0 if successful, �1 if
the RTC is in halt mode.

� void WriteRam1302(int ram_loc, int data)

Writes data to ram_loc (0�30) of the DS1302. The function returns 1
if the write is successful, and �1 if an error occurs.

Function Reference Controller Libraries s 3-5

� int ReadRam1302(int ram_loc)

Reads data from ram_loc (0�30) of the DS1302. The function returns
RAM data, or �1 if an error occurs.

� void WriteBurst1302(char *pdata, int count)

Writes count bytes from the array pdata to the RAM of the DS1302
,starting at RAM location 0.

� void ReadBurst1302(char *pdata, int count)

Reads back count number of bytes from the DS1302, starting from
RAM location 0 to the array pdata.

� void Write1302(int reg, int data)

Writes data to the specified register of the DS1302.

� int Read1302(int reg)

Reads data from the specified register of the DS1302. The function
returns the data read.

� void setPIOCA(byte mask)

Active bits (1s) of mask are set in PIOCAShadow. That result is then
sent to PIOCA. Active bits become input bits.

PIOCA ← PIOCAShadow ← PIOCAShadow OR mask

� void resPIOCA(byte mask)

Active bits (1s) of mask are reset in PIOCAShadow. That result is then
sent to PIOCA. Active bits become output bits.

PIOCA ← PIOCAShadow ← PIOCAShadow AND NOT mask

� void setPIODA(byte mask)

Active bits (1s) of mask are set in the current output of PIODA.

PIODA ← PIODA OR mask

� void resPIODA(byte mask)

Active bits (1s) of mask are reset in the current output of PIODA.

PIODA ← PIODA AND NOT mask

� void setPIOCB(byte mask)

Active bits (1s) of mask are set in PIOCBShadow. That result is then
sent to PIOCB. Active bits become input bits.

PIOCB ← PIOCBShadow ← PIOCBShadow OR mask

Dynamic C 5.x3-6 s Controller Libraries

� void resPIOCB(byte mask)

Active bits (1s) of mask are reset in PIOCBShadow. That result is then
sent to PIOCB. Active bits become output bits.

PIOCB ← PIOCBShadow ← PIOCBShadow AND NOT mask

� void setPIODB(byte mask)

Active bits (1s) of mask are set in the current output of PIODB.

PIODB ← PIODB OR mask

� void resPIODB(byte mask)

Active bits (1s) of mask are reset in the current output of PIODB.

PIODB ← PIODB AND NOT mask

� void mgset12adr(int addr)

Sets the current address of the PLCBus. A subsequent read or write of
the PLCBus will access the expansion device with this address. The
address remains in effect until a new address is set. The term addr is
the 12-bit physical address of the PLCBus device. The lowest 4-bit
nibble is transmitted last (as BUSADR2). The third nibble is transmitted
first (as BUSADR0).

� void mgwrite12data(int addr, int data)

Writes data to the PLCBus device at addr. Only the lowest four bits of
data are useable (for BUSWR).

� int mgread12data0(int addr)

Reads data (with BUSRD0) from the PLCBus device at addr. The
function result holds the data.

� int mgread12data1(int addr)

Reads data (with BUSRD1) from the PLCBus device at addr. The
function result holds the data.

� int mgread12data2(int addr)

Reads data (with BUSRD2) from the PLCBus device at addr. The
function result holds the data.

� void mgwrite4data(int value)

Writes the low 4 bits of value (with BUSWR) to a PLCBus device. This
function assumes that the PLCBus device�s address has been placed on
the bus (with mgset12adr).

Function Reference Controller Libraries s 3-7

� void mgsave_pbus()

Saves the current state of the PLCBus to the stack. This function
should only be called in tandem with mgrestore_pbus. Otherwise,
the stack will become unbalanced.

� void mgrestore_pbus()

Restores the current state of the PLCBus from the stack. This function
should only be called in tandem with mgsave_pbus. Otherwise, the
stack will become unbalanced.

� void mgplc_set_relay(int number, int relay,
int state)

Turns a relay on the PLCBus on or off. The board must be a Z-World
XP8300 or XP8400 board and its number must be from 0 to 63. The
term relay selects the relay on the selected board (0�5 for XP8300
boards and 0�7 for XP8400 boards). The term state is 1 to turn the
relay on and 0 to turn it off.

$ Refer to the XP8100 and XP8200 User�s Manual for details
regarding devices and device numbering schemes.

$ Refer to the XP8300, XP8400 and SE1100 User�s Manual
for details regarding devices and device numbering schemes.

$ Refer to the XP8300, XP8400 and SE1100 User�s Manual
for details regarding devices and device numbering schemes.

� int mgplcrly_board(int number)

Computes the physical address of a relay board from its board number.
The number must be from 0 to 63. (Board number 0 corresponds to
address 0x000; board number 63 corresponds to address 0x11F.) The
return value has the third and the first nibbles interchanged.

� int mgplcuio_board(int number)

Computes the physical address of a universal I/O board (XP8700) from
its board number. The number must be from 0 to 15. (Board number
0 corresponds to address 0x040; board number 15 corresponds to
address 0x04F.) The return value has the third and the first nibbles
interchanged.

Dynamic C 5.x3-8 s Controller Libraries

� int mgplc_dac_board(int number)

Computes the physical address of a DAC board (XP8600) from its
board number. The number must be from 0 to 63. (Board number 0
corresponds to address 0x020 board number 63 corresponds to address
0x13F.) The return value has the third and the first nibbles inter-
changed.

� void mginit_dac()

Initializes a DAC board (XP8600) board on the PLCBus. This
function assumes that the board�s address has been placed on the bus
(with mgset12adr).

� void mgwrite_dac1(int value)

Writes the 12-bit integer value to Register A of DAC 1 of a DAC
board (XP8600)on the PLCBus. This function assumes that the board�s
address has been placed on the bus (with mgset12adr). The DAC
board does not produce a new conversion value until a call to
mglatch_dac1 is executed.

� void mglatch_dac1()

Moves Register A data to Register B of DAC 1 of a DAC board
(XP8600) on the PLCBus. Actual DAC 1 output is converted from
Register B. This function assumes that the board�s address has been
placed on the bus (with mgset12adr). Ensure that Register A contains
valid data. See mgwrite_dac1 above.

� void mgset_dac1(int value)

Writes a 12-bit integer value to Register A, then moves the data from
Register A to Register B of DAC 1 of a selected DAC board (XP8600).
This function assumes that the board�s address has been placed on the
bus (with mgset12adr). It combines the effect of mgwrite_dac1 and
mglatch_dac1.

� void mgwrite_dac2(int value)

Writes the 12-bit integer value to Register A of DAC 2 of a DAC board
(XP8600) on the PLCBus. This function assumes that the board�s
address has been placed on the bus (with mgset12adr). The DAC
board does not produce a new conversion value until a call to
mglatch_dac2 is executed.

$ Refer to the XP8600 and XP8900 User�s Manual for details
regarding devices and device numbering schemes.

Function Reference Controller Libraries s 3-9

� void mglatch_dac2()

Moves Register A data to Register B of DAC 2 of a DAC board
(XP8600) on the PLCBus. Actual DAC 2 output is converted from
Register B. This function assumes that the board�s address has been
placed on the bus (with mgset12adr). Ensure that Register A contains
valid data. See mgwrite_dac2 above.

� void mgset_dac2(int value)

Writes a 12-bit integer value to Register A, then moves the data from
Register A to Register B of DAC 2 of a selected DAC board (XP8600).
This function assumes that the board�s address has been placed on the
bus (with mgset12adr). It combines the effect of mgwrite_dac2 and
mglatch_dac2.

� void lc_char(byte data)

Writes a character to the LCD.

� void lc_ctrl(byte cmd)

Writes a control command to the LCD.

� void lc_init()

Initializes the LCD and accessory variables. The LCD uses PIO Port A
of the BL1400.

� void lc_cgram(void* ptr)

Loads up to 8 special characters to the character generator of the LCD
from the byte array *p. The first byte in the array is the number of
bytes to store (at 8 bytes per character), with a maximum value of 64
for 8 characters. The character codes for the special characters are 0,
1, 2, 3, 4, 5, 6, and 7.

� void lc_printf(char* format, ...)

This function works like printf, but for the LCD. The following
escape sequences are also implemented:

ESC 1 turns cursor on
ESC 0 turns cursor off
ESC c erases from cursor to end of line
ESC b enables cursor blinking
ESC n disables cursor blinking
ESC e erases display and home cursor
ESC p n mm position cursor at line n, column mm

The escape character code is 0x1B.

Dynamic C 5.x3-10 s Controller Libraries

� lc_kxinit()

Initializes the keypad driver and accessory variables. Be sure to define
KEY4x6 somewhere at the start of the code for a 4 × 6 keypad.

#define KEY4x6

Otherwise, the driver defaults to a 2 × 6 keypad.

� int lc_kxget(int mode)

Obtains the key value from the FIFO keypad buffer. If mode = 0, the
key value is removed from the buffer. Otherwise, the key value is left
in the buffer. In either case, the function returns the key value, or �1 if
the keypad buffer is empty.

� void lc_keyscan()

Scans the 4 × 6 or 2 × 6 keypad. A valid key has to be persistent for
DebounceCount calls to lc_keyscan. The function puts valid
keypresses into the keypad FIFO buffer. The software will access these
keypresses using lc_kxget.

�Debouncing� is done by making sure a key is pressed for
DebounceCount consecutive calls to lc_keyscan. The debouncing
number may be changed by redefining DebounceCount:

#define DebounceCount nn

If not redefined, DebounceCount defaults to 20. If lc_keyscan is
called every 25 milliseconds and DebounceCount is 20, then a key
has to be pressed for 20 × 25 milliseconds = 500 milliseconds to be
valid.

BL16XX.LIB
These functions support the BL1600 series controllers.

� void VIOInit()

Dummy function used as a host for global initialization of the virtual
I/O variables. Virtual inputs are read and virtual outputs are written out
whenever the function VIODrvr is called. Digital inputs are DIGIN1 to
DIGIN12. Digital outputs are OUTB1 to OUTB8 and HC1 to HC6. A
digital input must have the same value for two successive reads to be
valid.

� void VIODrvr()

Updates the virtual inputs DIGIN1 through DIGIN12. The virtual
outputs OUTB1 to OUTB8 and HC1 to HC6 are sent out to corresponding
output ports.

Function Reference Controller Libraries s 3-11

� int up_digin(int channel)

Reads the value of a digital input channel, channel must be from 1 to
12. The function returns 1 or 0, depending on the state of the channel.

� void up_setout(int channel, int onoff)

Sets a digital output to 1 (active) or 0 (inactive), channel must be
from 1 to 14. Channels 1�8 correspond to OUTB1 through OUTB8,
channels 9�14 correspond to HC1 through HC6. The term onoff is the
output value for the channel: 1 => high or active, 0 => low or inactive.

PK21XX.LIB
These functions support the PK2100 series controllers.

� void VIOInit()

Dummy function used as a host for global initialization of the virtual
I/O variables. Virtual inputs are read and virtual outputs are written out
whenever the function VIODrvr is called. Digital inputs are DIGIN1 to
DIGIN7 and U1IN to U7IN. Digital outputs are OUT1 to OUT10,
RELAY1 and RELAY2. A digital input must have the same value for two
successive reads to be valid.

� void VIODrvr()

Updates the virtual inputs DIGIN1 to DIGIN7 and U1IN to U7IN.
The virtual outputs OUT1 to OUT10, RELAY1 and RELAY2 are sent out
to corresponding output ports.

� int up_digin(int channel)

Reads value of digital input channel. channel must be from 1 to 7.
The function returns 1 or 0, depending on the state of the channel.

� void up_setout(int nout, int onoff)

Sets a digital output to 1 (active) or 0 (inactive). channel must be
from 1 to 10, corresponding to OUT1 to OUT10, 11 for RELAY1, or 12
for RELAY2. The term onoff is the output value for the channel: 1 =>
high or active; 0 => low or inactive.

� void init_daccal()

Dummy function used as a host for global initialization of the
DACCAL calibration values for the PK2100�s DAC output.

� void up_daccal(int val)

Outputs to DAC with calibration value for 0-10000 millivolts.

� void up_dacout(int val)

Outputs uncalibrated D/A value to channel DAC.

Dynamic C 5.x3-12 s Controller Libraries

� void up_expout(int val)

Outputs uncalibrated D/A value to channel EXP.

� int up_adtest(int chan, int testval)

Compares voltage input at universal input channel chan to testval.
The channel must be 1�7. The function returns 1 if the input voltage is
greater than testval, otherwise it returns 0.

� int up_uncal(int val)

Returns uncalibrated integer (0-1023), given calibrated D/A output
value in millivolts. The function returns the integer equivalent of the
input value in millivolts.

� int up_docal(int rawval)

Converts rawval to its calibrated value as A/D input.

� int up_adcal(int chan)

Reads specified universal input channel (1�7). The function returns the
calibrated A/D value for 0-10000 millivolts.

� int up_adrd(int chan)

Reads universal input channel (1�7). The function returns the raw
value (ADC output) from specified the channel.

� void up_dac420(int current)

Outputs 4-20 milliamps at D/A channel DAC. Hardware must be
configured for current-loop operation. The range for current is 4000�
20000.

� int up_in420()

Reads universal input channel 6 as a 4-20 milliamp input. Hardware
must be configured for current-loop operation. The function returns a
value in the range 4000�20000.

� float up_higain(int mode)

Reads high-gain channel with H7 not jumpered. The function returns
are as follows.

If mode = 1, returns AD+ (0�1 volts). Assumes AD� is grounded.
If mode = 2, returns AD+ � AD� (0�1 volts).
If mode = 3, returns AD� (0�10 volts).
If mode is undefined, returns �100.

Function Reference Controller Libraries s 3-13

PK22XX.LIB
These functions support the PK2200 series controllers.

� void VIOInit()

Dummy function used as a host for global initialization of the virtual
I/O variables. Virtual inputs are read and virtual outputs are written out
whenever the function VIODrvr is called. Digital inputs are DIGIN1 to
DIGIN16. Digital outputs are OUT1 to OUT14. A digital input must
have the same value for two successive reads to be valid.

� void VIODrvr()

Updates the virtual inputs DIGIN1 through DIGIN16. The virtual
outputs OUT1 to OUT14 are sent out to corresponding output ports.

� int up_digin(int channel)

Reads value of digital input channel. The channel must be from 1 to
16. The function returns 1 or 0, depending on the state of the channel.

� void up_setout(int nout, int onoff)

Sets a digital output to 1 (active) or 0 (inactive). The channel must be
from 1 to 14, corresponding to OUT1 through OUT14. The term onoff
is the output value for the channel: 1 => high or active, 0 => low or
inactive.

CM71_72.LIB
The CM71_72 library contains functions written specifically for the
CM7100 and CM7200 series microprocessor core modules used in
conjunction with their evaluation board and LCD/keypad module. Func-
tions of the same name may exist in other libraries.

� void lc_kxinit()

Initializes the keypad driver and accessory variables for a 2 × 6 keypad.

� int lc_kxget(int mode)

Obtains the key value from the FIFO keypad buffer. If mode = 0, the
key value is removed from the buffer. Otherwise, the key value is left
in the buffer. In either case, the function returns the key value, or -1 if
the keypad buffer is empty.

� void lc_keyscan()

Scans the 2 × 6 keypad on the CM7100 evaluation board. A valid
keypress has to persist for DebounceCount samples.
(DebounceCount is defined globally with a default value of 10.) Call
lc_keyscan in a periodic routine. Valid keys are placed in a keypad
buffer. Access the keypad buffer with function lc_kxget.

Dynamic C 5.x3-14 s Controller Libraries

� void up_beep(uint k)

Starts the beeper sounding for k milliseconds. The number of millisec-
onds that the beeper actually sounds depends on the periodic routine
that calls lc_beepscan. For example, if lc_beepscan is called
every 50 milliseconds, then BeepScale = 1/50 = 0.02. (BeepScale
is a globally defined value whose default is 0.04.)

� void lc_beepscan()

Services the beeper on the CM7100 Evaluation Board. The beep
duration is set previously with up_beep. The beeper count is
decremented whenever this function is called. The beeper is turned off
when the count reaches zero.

This function should be called by a periodic routine, for example, one
that executes every 25 milliseconds.

Function Reference AASC Libraries s 4-1

AASC LIBRARIES

The Abstract Application-Level Serial Communication (AASC) library
and its low-level support functions facilitate serial communication between
controllers, and between a controller and another device such as a PC.

Dynamic C 5.x4-2 s AASC Libraries

AASC.LIB
AASC libraries allow the programmer to create buffered character streams
that perform input/output to/from ports in the communication devices.
One principal library, AASC.LIB, contains all the functions required for
these tasks.

The high-level routines handle the bookkeeping for the connections
between the low-level circular buffer and hardware driver libraries. This
allows the same programming framework to be used by any applicable
hardware drivers.

� CHANNEL aascOpen(int Type, char CRTS,
long Param, void(*brqfnc)())

Opens a channel of device Type, and initializes the device with
parameter Param.

PARAMETERS: Type is the type of communication device to open.

DEV_Z0 for the Z0 port,
DEV_Z1 for the Z1 port,
DEV_SCC for the Serial Communication Controller port,
DEV_ZNET for the network device, and
DEV_UART for the XP8700.

CRTS specifies whether CTS/RTS handshaking should be used: 1
means CTS/RTS handshaking is used, 0 means CTS/RTS handshaking
is not used.

Param specifies all the other communication options. Z-World has
defined the following macros.

Number of Data Bits Number of Stop Bits Number of Parity Bits

ASCI_PARAM_7D ASCI_PARAM_1STOP ASCI_PARAM_NOPARITY

ASCI_PARAM_8D ASCI_PARAM_2STOP ASCI_PARAM_OPARITY

ASCI_PARAM_EPARITY

SCC_7DATA SCC_1STOP SCC_NOPARITY

SCC_8DATA SCC_2STOP SCC_OPARITY

SCC_EPARITY

Choose one macro from each column to bit-or or add together to
describe the channel configuration, as shown below.

ASCI_PARAM_7D | ASCI_PARAM_1STOP | ASCI_NOPARITY

These macros apply to port Z0 of the Z180 or to the Serial
Communication controller. Refer to the Dynamic C driver
descriptions or online help for additional macros.

!

Function Reference AASC Libraries s 4-3

Two commonly used combination macros have also been defined.

ASCI_PARAM_1200�Basic quantum for baud rate. Multiply by the
factor baud rate ÷ 1200 (for example, 8 for 9600 bps).

ASCI_PARAM_8N1�Specifies 8 data bits, 1 stop bit and no parity.

For example, the Z0 channel in 8N1 format at 19,200 bps would have

Param = 16*ASCI_PARAM_1200 | ASCI_PARAM_8N1 .

brqfnc is a pointer to a function to be called by the Z0 interrupt when
a break request is detected. The return for void *brqfnc is null.

RETURN VALUE: 16-bit quantity of type CHANNEL for all further
channel operations. aascOpen returns null if no channels can be
assigned if break processing is not used.

� void aascClose(CHANNEL Channel)

Closes the channel numbered Channel. First, aascClose calls the
device-dependent routine to close the device. Then the storage
associated with this channel is reattached to the free list.

PARAMETER: Channel is the logical channel.

� void aascSetReadBuf(CHANNEL channel,
char *Buffer, uint size)

Designates a memory area pointed to by Buffer of size to be the
receive buffer for channel.

PARAMETERS: channel to be read from must be opened by an
aascOpen call.

Buffer is the address of the receive buffer.

size is the size of the receive buffer.

� void aascSetWriteBuf(CHANNEL Channel,
char *Buffer, uint size)

Designates a memory area pointed to by Buffer of size to be the
transmit buffer for Channel.

PARAMETERS: Channel to write to must be opened by an
aascOpen call.

Buffer is the address of the transmit buffer.

size is the size of the transmit buffer.

Dynamic C 5.x4-4 s AASC Libraries

� void aascRxSwitch(CHANNEL Channel, char OnOff)

Activates or deactivates the channel receiver.

PARAMETERS: Channel is the logical channel.

OnOff 0 is off, otherwise the channel transmitter is on.

� void aascTxSwitch(CHANNEL Channel, char OnOff)

Switches the channel transmitter on or off.

PARAMETERS: Channel is the logical channel.

OnOff 0 is off, otherwise the channel transmitter is on.

� uint aascReadChar(CHANNEL Channel,
char *Dest)

Reads a character from channel Channel to the memory pointed to by
Dest. The receiver will be enabled automatically if CTS/RTS flow
control is enabled and the receive buffer has more than 16 bytes
remaining (after the read).

PARAMETERS: Channel is the logical channel.

Dest is the address (buffer) to read character into.

RETURN VALUE: The actual number of bytes read from the channel.

� uint aascReadBlk(CHANNEL Channel, void *Dest,
uint Length, char Flags)

Reads a block of Length bytes from logical channel Channel to the
memory pointed to by Dest. If Flags is non zero, either the entire
Length or no bytes will be read. The receiver will be enabled auto-
matically if flow control is enabled and the receive buffer has more
than 16 bytes left (after the read).

PARAMETERS: Channel is the logical channel.

Dest is the address (buffer) to read into.

Length is the number of bytes to read.

If Flag is non-zero either all Length bytes will be read or no bytes
will be read.

RETURN VALUE: The actual number of bytes read from the channel.

� uint aascWriteChar(CHANNEL Channel,
char Src)

Writes a character Src to logical channel Channel. The transmitter is
enabled automatically after the character is transferred.

RETURN VALUE: The actual number of bytes written to the channel.

Function Reference AASC Libraries s 4-5

� uint aascWriteBlk(CHANNEL Channel, void *Src,
uint Length, char Flags)

Writes a block of Length bytes to logical channel Channel from the
memory pointed to by Src. If Flags is non zero, either the entire
Length or no bytes will be written. The transmitter is turned on
automatically after the bytes are written to the buffer.

PARAMETERS: Channel is the logical channel.

Dest is the address (buffer) to write from.

Length is the number of bytes to write.

If Flag is non-zero either all Length bytes will be written or no bytes
will be written.

RETURN VALUE: The actual number of bytes written to the channel.

� uint aascPeek(CHANNEL Channel,
void *pMatchee, uint size)

Tries to match as much data of up to size size as possible pointed to
by pMatchee (not null-character terminated).

PARAMETERS: Channel is the logical channel.

pMatchee is the address of string to match.

size is the number of bytes to attempt to match.

RETURN VALUE: The number of bytes actually matched.

� uint aascScanTerm(CHANNEL Channel,
char Term)

Scans the receive buffer of logical channel Channel for the terminat-
ing character Term. Note that this function does not read any bytes
from the receive buffer. The receiver will be enabled automatically if
flow control is enabled and the receive buffer has more than 16 bytes
remaining.

RETURN VALUE: The packet size terminated by Term.

� void aascPipe(CHANNEL Channel,
CHANNEL Out, CHANNEL In)

Makes a pipe by diverting the output of Channel to the input of Out,
and diverting the input of Channel from In.

PARAMETERS: Channel, Out, and In are logical channels.

Dynamic C 5.x4-6 s AASC Libraries

� long aascGetError(CHANNEL Channel)

Gets the current error condition.

PARAMETER: Channel is the logical channel.

RETURN VALUE: Depends on the device. For specific return values,
see the description of the device driver's <device_name>GetErr()
function (for example, sio0GetErr()).

� void aascClearError(CHANNEL Channel)

Clears the error condition.

PARAMETER: Channel is the logical channel.

� uint aascReadBufLeft(CHANNEL Channel)

Computes the number of bytes left to be read from the receive buffer of
logical channel Channel.

RETURN VALUE: The number of bytes left to be read.

� uint aascWriteBufLeft(CHANNEL Channel)

Computes the number of bytes left to be transmitted from the transmit
buffer of logical channel Channel.

RETURN VALUE: The number of bytes left to be transmitted.

� uint aascReadBufFree(CHANNEL Channel)

Computes the number of bytes free in the receive buffer of logical
channel Channel.

RETURN VALUE: The number of free bytes.

� uint aascWriteBufFree(CHANNEL Channel)

Computes the number of free bytes in the transmit buffer of logical
channel Channel.

RETURN VALUE: The number of free bytes.

� void aascFlush(CHANNEL Channel)

Flushes the buffers associated with logical channel Channel, and loses
all information that may be left in the buffers. If the channel is capable
of CTS/RTS flow control, the programmer should determine whether to
explicitly reenable the receive channel by calling aascRxSwitch.
aascRxSwitch will disable RTS explicitly to allow the other side to
transmit.

Function Reference AASC Libraries s 4-7

� void aascFlushRdBuf(CHANNEL Channel)

Flushes the read buffer associated with logical channel Channel, and
loses all information that may be left in the buffer. If the channel is
capable of CTS/RTS flow control, the programmer should determine
whether to explicitly reenable the receive channel by calling
aascRxSwitch. aascRxSwitch will explicitly disable RTS to allow
the other side to transmit.

� void aascFlushWrBuf(CHANNEL Channel)

Flushes the write buffer associated with logical channel Channel. All
information is erased from the buffer.

� void aascPrintf(CHANNEL Chan, char *fmt, �)

Prints a formatted string to channel Chan.

PARAMETERS: Chan is the channel to send to.

fmt is the format of the string to be printed.

Arguments (if any) should follow fmt.

� void aascVPrintf(CHANNEL Chan, char *fmt,
void *firstArg)

Prints a formatted string to channel Chan.

PARAMETERS: Chan is the channel to send to.

fmt is a format string.

firstArg is a pointer to the first argument.

XModem Functions in AASC.LIB
The XModem protocol performs packet-based file transfers with CRC
error detection.

The packet structure for XModem transfer appears below.

Bytes Description

 1 Start Of Header

 1 Packet Sequence Number

 1 1�s Complement of Packet Sequence Number

 � DATA (128 or 1024 bytes, binary or text)

 2 CRC-CCITT (0x1021 divisor)

Dynamic C 5.x4-8 s AASC Libraries

� void aascXMRdInitPhy(uint Where, uint Length,
ulong XmemSrcAddr)

Initializes location and size of physical memory for aascReadXModem()
PC-to-target data transfer. Specifies the location on the target and the
maximum number of bytes to be transferred from the PC.

PARAMETERS: Where is the root memory location on the target
where the data being transferred are placed.

Length is the maximum number of bytes to transfer.

XmemSrcAddr is the final memory destination.

� void aascXMRdInitLog(uint Where, uint Length)

Initializes location and size of logical memory for aascReadXModem()
PC-to-target data transfer. Specifies the location on the target and the
maximum number of bytes to be transferred from the PC.

This default function tells the default callback read function
aascRdCBackLocLg to advance the buffer pointer by the packet size
after receiving each packet.

PARAMETERS: Where is the root memory location on the target
where the data being transferred are placed.

Length is the maximum number of bytes to transfer.

� uint aascReadXModem(CHANNEL Channel,
char *(*read_callback_loc)(),
void (*read_callback_mod)(),
char Initialize)

Performs XModem PC-to-target download. Call this function once
with Initialize set to 1. Then set Initialize to 0, and call this
function repeatedly until its return value is non zero.

Call aascXMRdInitPhy() for physical memory transfers or
aascXMRdInitLog() for logical memory transfers before using
aascReadXModem().

PARAMETERS: Channel is the channel being read from.

read_callback_loc is a pointer to a callback function that will be
called by this function BEFORE each XModem packet is received.
This function determines where the packet is placed in memory using
the callback function aascRdCBackLocLg().

read_callback_mod is a pointer to a callback function that will be
called by this function AFTER each XModem packet is received. This
function performs further processing on the data. A default function
aascRdCBackLocPh() that does no processing is provided.

Function Reference AASC Libraries s 4-9

Initialize is the initialization flag. Set Initialize to 1 to
initialize XModem on the first call. Set Initialize to 0 for all
subsequent calls.

RETURN VALUE:

XX_SUCCESS XX_TIMEOUT
XX_COMMERR XX_CANCEL
XX_SEQ XX_CHKSUM
XX_NOSTART XX_NOBEGPAK
XX_SYNC

� uint aascRdCBackLocPh(uint PackSize,
char PackNum)

Dummy function called by aascReadXModem() after a packet is
received. Can be replaced by user-defined function if modifications are
required on a packet.

PARAMETERS: PackSize is the packet size being used by XModem
(128 or 1024 bytes).

PackSize is the number of the current packet.

RETURN VALUE: Root memory logical address where packet from
PC will be placed before transfer to physical memory.

� uint aascRdCBackLocLg(uint PackSize,
char PackNum)

Default callback function for addressing blocks for PC-to-target
transfers. This is called by aascReadXModem() before receiving a
packet from the PC. This function advances the pointer to the target
memory by PackSize after each packet is sent.

PARAMETERS: PackSize is the packet size being used by
XModem.

0 - use 128 byte XModem packets
1 - use 1024 byte XModem packets

PackNum is the number of the current packet.

RETURN VALUE: The logical memory address where the packet
from the PC will be placed.

� void aascXMWrInitPhy(uint Where, uint Length,
ulong XmemSrcAddr)

Initializes location and size of physical memory to be transferred to the PC.

PARAMETERS: Where is the address on the target where the data
being transferred are placed.

Length is the maximum number of bytes to receive.

XmemSrcAddr is the physical memory source of the data to transfer.

Dynamic C 5.x4-10 s AASC Libraries

� void aascXMWrInitLog(uint Where, uint Length)

Initializes location and size of logical memory to be transferred to the PC.

PARAMETERS: Where is the address on the target where the data
being transferred are placed.

Length is the maximum number of bytes to receive.

� int aascWriteXModem(CHANNEL Channel,
char Pak1K, char Initialize,
uint(*write_callback)())

Performs XModem target-to-PC upload. Call this function once with
Initialize set to 1. Then set Initialize to 0, and call this
function repeatedly until it�s return value is non-zero.

Call aascXMWrInitPhy() for physical memory transfers or
aascXMWrInitLog() for logical memory transfers before the first call
to aascReadXModem().

PARAMETERS: Channel is the logical channel being written to.

Pak1K is the XModem packet size.
0 - use 128 byte XModem packets
1 - use 1024 byte XModem packets

Initialize is the initialization flag. Set Initialize to one to
initialize XModem on the first call. Set Initialize to zero for all
subsequent calls.

write_callback is a pointer to a callback function that will be called
by this function BEFORE each XModem packet is sent so that further
processing can be performed on the data. The default functions
aascWrCallBackLg() and aascWrCallBackPh() are provided for
logical and physical memory transfers. See on-line help on these
functions for further details.

RETURN VALUE:

XX_SUCCESS
XX_TIMEOUT
XX_COMMERR
XX_CANCEL
XX_NOSTART
XX_SYNC

Function Reference AASC Libraries s 4-11

� uint aascWrCallBackPh(uint PackSize,
char PackNum)

Default callback function for addressing data for target-to-PC transfers.
aascWrCallBackPh is called by aascWriteXModem() before
sending a packet to the PC. aascWrCallBackPh advances the pointer
to the target�s memory by PackSize after each packet is sent.
aascWrCallBackPh determines the address based on PackSize and
Packnum.

PARAMETERS: PackSize is the packet size being used by
XModem.

0 - use 128 byte XModem packets
1 - use 1024 byte XModem packets

PackNum is the number of the current packet.

RETURN VALUE: The address of the next location to transfer data
from; 0 if the requested packet number exceeds the file size.

� uint aascWrCallBackLg(uint PackSize,
char PackNum)

Default callback function for addressing data for target-to-PC transfers.
aascWrCallBackLg is called by aascWriteXModem() before
sending a packet to the PC. aascWrCallBackLg advances the pointer
to the target�s memory by PackSize after each packet is sent.
aascWrCallBackLg determines the address based on PackSize and
Packnum.

PARAMETERS: PackSize is the packet size being used by
XModem.

0 - use 128 byte XModem packets
1 - use 1024 byte XModem packets

PackNum is the number of the current packet.

RETURN VALUE: The address of the next location to transfer data
from; 0 if the requested packet number exceeds the file size.

Dynamic C 5.x4-12 s AASC Libraries

Function Reference Other Libraries s 5-1

OTHER LIBRARIES

The libraries described in Chapter 5 are specific to one or more types of
controllers.

Dynamic C 5.x5-2 s Other Libraries

5KEY.LIB
These LCD and keypad functions support the PK2100 and PK2200 series
controllers. This is the old five-key system. It uses the real-time kernel
(RTK). The standard LCD is 2 × 20. To run the five-key system with a
2 × 16 LCD, write #define LCD16x2 at the start of the program.

� void _5keysettime(char *time)

Sets real-time clock time, based on string *time. The string format is
�hh:mm:ss�.

� void _5keysetdate(char *date)

Sets real-time clock date, based on string pointed to by *date. The
string format is �mm-dd-yy�.

� void _5keygettime(char *time)

Gets real-time clock time and stores it in *time. The string format is
�hh:mm:ss�.

� void _5keygetdate(char *date)

Gets real-time clock date and stores it in *date. The string format is
�mm-dd-yy�.

� void lcd_server(char mode, long position,
char *lcd_msg)

Clears number of lines, specified by mode, and displays message
*lcd_msg at position. See CPLC.LIB for description of position
fields.

� int _5key_float(
char *label, float *value,
float max, float min,
char *help[], byte size,
byte modify, byte delay)

This is the five-key system handler for a float parameter. It modifies or
monitors the following parameters.

label the item label (string)

value pointer to a float variable

max, min the data limits

help[] an array of help strings

size size of the help array (the number of help strings); use
sizeof(help)

modify if 1, value is updated; if 0, value is only monitored

Function Reference Other Libraries s 5-3

delay number of 25-millisecond RTK ticks after which the
software will release the current five-key task, freeing
other lower priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_integer(
char *label, int *value,
int max, int min,
char *help[], byte size,
byte modify, byte delay)

This is the five-key system handler for an integer parameter. It
modifies or monitors the following parameters.

label the item label (string)

value pointer to an integer variable

min, max the data limits

help[] an array of help strings

size size of the help array (the number of help strings); use
sizeof(help)

modify if 1, value is updated; if 0, value is only monitored

delay number of 25-millisecond RTK ticks after which the
software will release the current five-key task, freeing
other lower priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_boolean(
char *label, byte *value,
char *help[], byte size,
byte modify, byte delay)

This is the five-key system handler for a Boolean parameter. It modifies
or monitors the following parameters.

label the item label (string)

value pointer to a �Boolean� variable

help[] an array of help strings

size size of the help array (the number of help strings); use
sizeof(help)

modify if 1, value is updated; if 0, value is only monitored

Dynamic C 5.x5-4 s Other Libraries

delay number of 25-millisecond RTK ticks after which the
software will release the current five-key task, freeing
other lower priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_time(
char *label, char *string,
char *help[], byte size,
byte set_clock,
byte modify, byte delay)

This is the five-key system handler for a time parameter. It modifies or
monitors the following parameters.

label the item label (string)

string the time string

help[] an array of help strings

size size of the help array (the number of help strings); use
sizeof(help)

set_clock if non-zero, set the real-time clock

modify if 1, value is updated; if 0, value is only monitored

delay number of 25-millisecond RTK ticks after which the
software will release the current five-key task, freeing
other lower priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_date(
char *label, char *string,
char *help[], byte size,
byte set_clock,
byte modify, byte delay)

This is the five-key system handler for a date parameter. It modifies or
monitors the following parameters.

label the item label (string)

string the date string

help[] an array of help strings

size size of the help array (the number of help strings); use
sizeof(help)

set_clock if non-zero, set the real-time clock

Function Reference Other Libraries s 5-5

modify if 1, value is updated; if 0, value is only monitored

delay number of 25-millisecond RTK ticks after which the
software will release the current five-key task, freeing
other lower priority tasks.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� void _5key_setmenu(
char *menu, char *item,
byte mode, void *ptr,
float max, float min,
char *help[], byte size,
byte modify, byte delay,
byte display)

Adds a five-key item to the five-key linked list. Items with the same
menu label are grouped together. The following parameters are used.

menu the menu label (string)

item the item label (string)

mode type of data being created

ptr pointer to the data

max, min the data limits

help[] array of help strings

size size of the help array (the number of help strings); use
sizeof(help)

modify determines the handling of the data. To modify or to
monitor.

delay number of RTK ticks (25 ms) after which the software
will release the current five-key task, allowing other
lower priority tasks to execute

display 1 if item is to be added to the list of periodically dis-
played items; 0 if item is not to be added to the list.

� int _5key_init_item(
_5KEYITEM *thisitem, char *d_menu,
char *d_item, char data_mode,
void *data_ptr, float max_data,
float min_data, char *my_help[],
char help_line, char data_modify,
char delay)

Is called by _5key_setmenu to create a five-key item. The following
parameters are used.

Dynamic C 5.x5-6 s Other Libraries

thisitem points to a five-key item structure for the five-key link
list

d_menu points to a menu label

d_item points to an item label

data_mode is 0 for floats; 1 for ints; 2 for boolean (chars); 3 for
time strings; 4 for date strings.

The following macros can also be used.

_5key_Fdata, _5key_Idata, _5key_Bdata, _5key_Tdata and
_5key_Ddata.data_ptr point to the data

max_data is the upper limit and min_data is the lower limit for the
data

my_help[] is a list of help strings

help_line is twice the actual number of help strings

data_modify is 1 if data are to be modified through the five-key
system; else 0, if data are just monitored

delay is the five-key task suspend period

idisp is 1 if data are to be displayed periodically when there are no
keypad and lcd activities; else 0.

The function returns None.

� int _5key_server(_5KEYITEM *t_item)

Services a five-key item for display to the LCD and actions. The
function returns any of the five-key menu keys pressed.

� void _5key_menu()

Services the linked list created with _5key_setmenu(). This function
must be called inside an RTK task.

� void _5key_setalarm (
int(*func1)(), int(*func2)(),
int(*func3)(), int(*func4)())

Sets up the service functions for the software alarms.

func1(, the service function for _ALARM1
func2(), the service function for _ALARM2
func3(), the service function for _ALARM3, and
func4(), the service function for _ALARM4.

All the functions default to NO_FUNCTION. Service functions can be
changed or turned off at run-time as long as there is no conflict with the
execution of a service function.

Function Reference Other Libraries s 5-7

� void _5key_setfunc (
int(*func1)(), int(*func2)(),
int(*func3)(), int(*func4)())

Sets up the service functions for the function keys.

func1(), the service function for F1
func2(), the service function for F2
func3(), the service function for F3, and
func4(), the service function for F4.

All the functions default to NO_FUNCTION. Service functions can be
changed or turned off at run-time as long as there is no conflict with the
execution of a service function.

� void _5key_setmsg(byte message_no,
char *the_message)

Sets one of ten message strings for periodic display.

message_no the message number, 0�9
the_message the message string.

All the messages default to NULL.

5KEYEXTD.LIB
These keypad functions support the PK2100 and PK2200 series control-
lers. They use the real-time kernel (RTK).

� int _5key_12out()

This is the five-key server for the ten �virtual� digital outputs and two
�virtual� relay outputs. The digital output and the relay output states
can be modified through the five-key system. If an output state
changes, this function will refresh the display to reflect the change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_dacout()

This is the five-key server for the �virtual� DAC channel. If the output
value changes, this function will refresh the screen to reflect the
change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

Dynamic C 5.x5-8 s Other Libraries

� int _5key_uinput()

This is the five-key server for the six �virtual� universal inputs. If an
input state changes, this function will refresh the display to reflect the
change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_diginput()

This is the five-key server for the seven �virtual� digital inputs. If an
input state changes, this function will refresh the screen to reflect the
change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_bank1dig()

This is the five-key server for the �virtual� digital inputs 1�8. If an
input state changes, this function will refresh the screen to reflect the
change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_bank2dig()

This is the five-key server for the �virtual� digital inputs 9�16. If an
input state changes, this function will refresh the screen to reflect the
change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

� int _5key_14out()

This is the five-key server for the 14 �virtual� digital outputs. The
digital output states can be modified through the five-key system. If an
output state changes, this function will refresh the display to reflect the
change.

The function returns an integer representing one of the following keys:
MENU, ITEM, ADD or DELETE. It returns �1 when no key has been
pressed.

Function Reference Other Libraries s 5-9

CPLC.LIB
These functions support the PK2100 and PK2200 series controllers.

� void uplc_init()

Initializes drivers and variables for the following.

interrupt routine for background timer 1
LCD, when selected
keypad, if selected (keypad is scanned at 25 milliseconds)
virtual drivers, virtual timers and virtual watchdogs, when
selected.

The timer 1 interrupt routine also services the watchdog timer.

� void lc_kxinit()

Initializes keypad driver and associated variables as well as virtual
watchdog variables.

� void up_beepvol(int vol)

Sets beeper volume: vol = 1 for low volume; 2 for high volume.

� void lc_loadtab(int *tab, int tab_size)

Loads tab tables to match LCD screen.

� void lc_settab(char flag)

Sets the tab variable lc_usetab.

� int lc_kxget(char mode)

Fetches key value from FIFO keypad buffer. If mode = 0, value is
removed from buffer; else value remains in buffer.

The function returns the key value, or �1 if no key was pressed.

� void lc_setbeep(int delay)

Sets beeper duration for delay counts of 1280-Hz cycles.

� void up_beep(uint k)

Sets beeper on for k milliseconds.

� uint up_lastkey()

Returns time since last key was pressed, in units of 1/40 second. The
function returns elapsed time.

� void lc_init_keypad()

Initializes timer1, keypad driver and variables, and the real-time
kernel.

Dynamic C 5.x5-10 s Other Libraries

� void GLOBAL_INIT()

Refere to VDRIVER.LIB for a description of this function.

� int up_synctimer()

Synchronizes the virtual SEC_TIMER with the real-time clock (RTC).
The function returns 0 if RTC is read properly, and �1 otherwise.

DRIVERS.LIB
These are miscellaneous hardware drivers.

� int plcport(int bit)

Checks the specified bit of the PLCBus port. The function returns 1 if
the specified bit is set, or 0 if not.

� void set16adr(int address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address is a 16-bit
physical address (for 4-bit bus). The high-order nibble contains the
expansion register value, while the remaining nibbles form a 12-bit
address (the first and third nibbles must be swapped).

� void set12adr(int address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address is a 12-bit
physical address (for 4-bit bus) with the first and third nibbles swapped
(most significant nibble are in the low four bits).

� void set4adr(int address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address contains
the last 4-bits of the physical address (for 4-bit bus) in bits 8�11. A
12-bit address may be passed to this function, but only the last 4 bits
will be set. This function should only be called if the first 8 bits of the
address are the same as the address in the previous call to set12adr.

� char read4data(int address)

Sets the last 4 bits of the current PLCBus address using address (bits
8�11). Then reads 4 bits of data off of the bus with a BUSRD0 cycle.
The function returns PLCBus data in the lower 4 bits (upper bits are
undefined).

Function Reference Other Libraries s 5-11

� char read12data(int address)

Sets the current PLCBus address using the 12-bit address. Then
reads 4 bits of data off of the bus with a BUSRD0 cycle.

The function returns PLCBus data in the lower 4 bits (upper bits are
undefined).

� void write4data(int address, char data)

Sets the last 4 bits of the current PLCBus address using address (bits
8�11). Then writes the low 4 bits of data to the bus.

� void write12data(int address, char data)

Sets the current PLCBus address using the 12-bit address. Then
writes the low 4 bits of data to the bus.

� void hv_wr(char v)

Writes 8 bits to the high-voltage driver. Each bit affects one high-
voltage output. A 1 enables the corresponding output; 0 disables the
output.

� void hv_enb()

Enables high-voltage driver.

� void hv_dis()

Disables high-voltage driver.

� void lcd_init(char mode)

Initializes the LCD; mode should normally be set to 0x18.

� void lputc(char cc)

Sends a character to the LCD and updates the cursor (without wrap-
around); cc is the character to send: if the high bit is set, it will be
treated as a control character. Possible control characters are as
follows.

\n Newline (position cursor to line 1, column 0)
\xFF Clear screen
\xF0 Clear line 0
\xF1 Clear line 1
\xF2 Cursor OFF (cursor invisible, blink off)
\xF3 Cursor ON (solid cursor block)
\xF4 Cursor BLINK (blinks continuously)
\xF5 Shift display left
\xF6 Shift display right
\x80�\xA7 Position cursor at line 0
\xC0�\xE7 Position cursor at line 1

Dynamic C 5.x5-12 s Other Libraries

� void lcd_clr_line(char code)

Clears a line on the LCD; code should be 0x80 to clear line 0 and
0xC0 to clear line 1.

� void lcd_wait()

Waits until the LCD is ready to accept data.

� int lprintf(char *fmt, ...)

Operates the same as printf, but outputs to LCD.

� char *lputs(char *p)

Sends the null-terminated string *p to the LCD and updates the cursor
(without wraparound). All characters (except null) are sent directly to
the LCD; control characters are not recognized. The function returns a
pointer to the string.

� void* intoff(void* ptr)

Saves the current interrupt state in *ptr and then disables interrupts.
The function returns the pointer ptr.

� void* inton(void* ptr)

Enables interrupts if they were previously on, according to *ptr. ptr
must have been set previously by a call to intoff. The function
returns the pointer ptr.

� void doint()

Enables interrupts for a short time and then disables them (if they were
previously off). This allows interrupts to be processed in code where
they are otherwise disabled.

� int tm_rd(struct tm *t)

Reads the current system time into the structure t. This routine works
with either the Toshiba or Epsom clocks.

The following structure is used to hold the time and date:

struct tm {
 char tm_sec; // 0-59
 char tm_min; // 0-59
 char tm_hour; // 0-23
 char tm_mday; // 1-31
 char tm_mon; // 1-12
 char tm_year; // 00-150 (1900-2050)
 char tm_wday; // 0-6 where 0 means Sunday
};

The function returns 0 if successful, and �1 if the clock is failing or is
not installed.

Function Reference Other Libraries s 5-13

� int tm_wr(struct tm *t)

Sets the system time according to the structure t. This routine works
with either the Toshiba or Epsom clocks.

The following structure is used to hold the time and date:

struct tm {
 char tm_sec; // 0-59
 char tm_min; // 0-59
 char tm_hour; // 0-23
 char tm_mday; // 1-31
 char tm_mon; // 1-12
 char tm_year; // 00-150 (1900-2050)
 char tm_wday; // 0-6 where 0 means Sunday
};

The function returns 0 if successful, and �1 if the clock is failing or is
not installed.

� void mktm(struct tm *timeptr, long time)

Fills the structure pointed to by timeptr according to time, specified
in seconds since January 1, 1980.

� long mktime(struct tm *timeptr)

Converts the contents of timeptr into a long integer. The function
returns time in seconds since January 1, 1980.

� long clock()

Reads the system clock and converts time to a long integer. The
function returns system time in seconds since January 1, 1980.

� long phy_adr(char *adr)

Converts a logical (16-bit) address to a physical (20-bit) address. adr
points to the address. The function returns 20-bit address as a long
integer.

� void dmacopy(long dest, long src, uint count)

Uses DMA to copy count bytes from one physical address (src) to
another (dest).

� void outportn(int port, char *buf, char count)

Writes count bytes to the specified output port. buf points to the
sequence of bytes to write.

Dynamic C 5.x5-14 s Other Libraries

� void init_timer0(uint count)

Initializes timer 0. count is the value placed in the reload register.
Some common count values and the frequencies they generate are
provided below for a 9.216-MHz clock.

9126 50 Hz 7680 60 Hz 7200 64 Hz
4608 100 Hz 2304 200 Hz 1152 400 Hz

900 512 Hz 600 768 Hz 500 928 Hz
450 1024 Hz

� void timer0_isr()

timer 0 interrupt service routine, runs the real-time kernel.

� void setbeep(int delay)

Sets up a timed beep. delay specifies the length of the beep in number
of timer1 ticks. timer1 interrupt performs the beep in the back-
ground, so this function returns immediately.

� void init_timer1(uint count)

Initializes timer1. count is the value placed in the reload register.
Some common count values and the frequencies they generate are
provided below for a 9.216-MHz clock.

9126 50 Hz 7680 60 Hz 7200 64 Hz
4608 100 Hz 2304 200 Hz 1152 400 Hz

900 512 Hz 600 768 Hz 500 928 Hz
450 1024 Hz

� void tdelay(int msec)

Waits for msec milliseconds, assuming that timer1 is running at
750 Hz. The actual delay is related to the frequency of timer1 by the
formula delay = 3 × (msec/4)/freq1.

� void int_timer1()

timer1 interrupt service routine. Drives the beeper and keypad. Also
runs the real-time kernel if RUNKERNEL is defined.

� void save_shadow()

Saves PLCBus shadow registers on the stack.

� void restore_shadow()

Restores PLCBus shadow registers from the stack and resets the
current bus address.

� void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
8 bits of data to the bus.

Function Reference Other Libraries s 5-15

� void write8data(long address, char data)

Sets the last 8 bits of the current PLCBus address using address (bits
16�23), then writes 8 bits of data to the bus.

� int read24data0(long address)

Sets the current PLCBus address using the 24-bit address, then reads
8 bits of data off of the bus with a BUSRD0 cycle. The function returns
PLCBus data in the lower 8 bits (upper bits are 0).

� int read8data0(long address)

Sets the last 8 bits of the current PLCBus address using address (bits
16�23), then reads 8 bits of data from the bus with a BUSRD0 cycle.
The function returns PLCBus data in the lower 8 bits, with the upper
bits 0.

� int read24data1(long address)

Sets the current PLCBus address using the 24-bit address, then reads
8 bits of data from the bus with a BUSRD1 cycle. The function returns
PLCBus data in the lower 8 bits (upper bits are 0).

� int read8data1(long address)

Sets the last 8 bits of the current PLCBus address using address (bits
16�23), then reads 8 bits of data from the bus with a BUSRD1 cycle.
The function returns PLCBus data in the lower 8 bits (upper bits are 0).

� void set24adr(long address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address is a 24-bit
physical address (for the 8-bit bus), with the first and third bytes
swapped (low byte most significant).

� void set8adr(long address)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. address contains
the last 8 bits of the physical address (for the 8-bit bus) in bits 16�23.
A 24-bit address may be passed to this function, but only the last 8 bits
will be set. This function should only be called if the first 16 bits of the
address are the same as the address in the previous call to set24adr.

� void plcbus_isr()

This function is used to service all PLCBus /AT line interrupts. The
/AT line is connected to INT1 of the Z180. Each interrupt service
routine (ISR) is responsible for assuring its device releases the /AT
signal once the ISR has been performed.

Dynamic C 5.x5-16 s Other Libraries

� void relocate_int1()

Reprograms the INT1 vector.

� int DelayTicks(CoData *pfb, uint ticks)

Provides tick time mechanism for costatements. Ticks occur 1280
times per second. (The period is 781.25 microseconds.) The function
returns 1 if the specified tick delay has lapsed. Otherwise, it returns 0.

� int DelayMs(CoData *pfb, long delayms)

Provides millisecond time mechanism for costatements. The function
returns 1 if the specified millisecond delay has lapsed. Otherwise, it
returns 0.

� int DelaySec(FuncBlk *pfb, long delaysec)

Provides second time mechanism for costatements. The function
returns 1 if the specified second delay has lapsed. Otherwise, it returns
0.

� int eei_rd(int address)

Reads two consecutive byte areas of the EEPROM for integer data.
The low byte is from address and the high byte is from address+1.

The function returns the integer at address from EEPROM.

� int eei_wr(int address, uint value)

Writes an integer value to the EEPROM at address. The lower byte
is at address and the high byte is at address+1 .

The function returns 0 if the write was successful.

� void DMA0(uint cnt)

Loads cnt to DMA0 counter to count high-speed pulses in hardware.
Maximum count is 64,000. _DMAFLAG0 is set to 0. If the DMA has
counted out, the interrupt service routine for DMA0 will generate an
interrupt in which _DMAFLAG0 is set to 1. Events are edge sensed.
C1A and C1B must both be low for /DREQ0 to generate an interrupt.

� void DMA1(uint cnt)

Loads cnt to the DMA1 counter to count high-speed pulses in hard-
ware. Maximum count is 64,000. _DMAFLAG1 is set to 0. If the DMA
has counted out, the interrupt service routine for DMA1 will generate
an interrupt in which _DMAFLAG1 is set to 1. Events are edge sensed.
C2A and C2B must both be low for /DREQ1 to generate an interrupt.
C2B uses one of the RS-485 receivers for differential input. For
example, tie C2B� to 5 volts; when the signal at C2B+ is lower than
5 volts, a negative edge is generated for the DMA counter.

Function Reference Other Libraries s 5-17

� uint DMASnapShot(char channel, uint *count)

Takes a �snap shot� of a DMA channel (0 or 1) for the number of
pulses counted. The function returns 0 if the pulse train is too fast to
have a snapshot taken; or 1 if a snapshot is obtained and valid data is in
*count.

� void powerdown()

Turns the power off. Power can only be turned back on by external
means. This only works for boards with a switching power supply
(except for the PK2200).

� void powerup()

Reverses the effect of powerdown so power stays on after external
power is disabled. See powerdown.

� void nmiint()

Default power-fail interrupt handler. The function does nothing and
never returns.

� void setperiodic(int period)

Sets a timer to periodically power up the BL1100. After this call, the
board may be put to sleep and will automatically awaken at the
specified interval. Execution will begin in the main function when
power is restored. period may be 4 (to wake once per second), 8 (to
wake once per minute), or 12 (to wake once per hour). Works only for
boards that have a switching power supply, except the PK2200.

� void sleep()

Puts the controller to sleep. Works for all boards that use a switching
power supply, except the PK2200.

The function does not return.

� void init_timer()

Initializes the system clock.

DMA.LIB
These functions support DMA use on all Z-World controllers.

� void DMA0Count(uint count)

Loads count to DMA0 counter to count high-speed pulses in hard-
ware. The maximum count is 64,000. The function sets the flag
_DMAFLAG0 to 0. DMA0 causes an interrupt when count negative
edges have been detected. The interrupt service routine for DMA0 will
set _DMAFLAG0 to 1. A user program can monitor _DMAFLAG0 to
determine whether count has finished.

Dynamic C 5.x5-18 s Other Libraries

� void DMA1Count(uint count)

Loads count to DMA1 counter to count high-speed pulses in hard-
ware. The maximum count is 64,000. The function sets the flag
_DMAFLAG1 to 0. DMA1 will cause an interrupt when count negative
edges have been detected. The interrupt service routine for DMA1 will
set _DMAFLAG1 to 1. A user program can monitor _DMAFLAG1 to
determine whether the count has finished.

� uint DMASnapShot(byte channel, uint *count)

Reads the number of pulses that a DMA channel (channel = 0 or 1)
has counted. A DMA counter is initialized with either DMA0Count or
DMA1Count. The function returns 0 if a DMA channel is counting too
fast to allow a stable reading of the count value. If the function reads
a stable count value, it returns 1 and sets the parameter *count. Note
that a DMA interrupt will still occur when the DMA channel finishes
counting, even if the count cannot be read.

� void DMA0_Off()
void DMA1_Off()

Turns the DMA channel off.

� uint DMA0_SerialInit(byte channel, byte mode,
byte baud)

Initializes serial port channel (must be 0 or 1) of the Z180 for DMA0
to serial transfers.

The term mode is defined as follows.

bit0 = 0 for 1 stop bit 1 for 2 stop bits
bit1 = 0 for no parity 1 for parity
bit2 = 0 for 7 data bits 1 for 8 data bits
bit3 = 0 for even parity 1 for odd parity.

The term baud is the baud rate in multiples of 1200 baud (e.g., 8 for
9600 baud).

� uint DMA0_Rx(byte port, ulong address,
uint count, int interrupts, int increments)

Initiates a transfer using DMA0 to receive count bytes from a serial
port (port = 0 or 1) to absolute memory locations starting at address.
The logical memory address for ordinary arrays may be converted to a
physical address with phy_adr(array). Simply pass the array name
directly for xdata arrays. DMA0 will generate an interrupt at the end
of the transfer if interrupts is 1. The user program must provide the
interrupt service routine. DMA0 does not generate an interrupt if
interrupts is 0. The term increments must be 0 to increment the
memory address, and 1 to decrement the memory address.

Function Reference Other Libraries s 5-19

The function returns 1 if successful, 0 if DMA0 is busy, �1 if the serial
port is busy, and �2 if channel is not 0 or 1.

� uint DMA0_Tx(byte port, ulong address,
uint count, int interrupts, int increments)

Initiates a transfer using DMA0 to transmit count bytes to a serial port
(port = 0 or 1) from absolute memory locations starting at address.
The logical memory address for ordinary arrays may be converted to a
physical address with phy_adr(array). Simply pass the array name
directly for xdata arrays. DMA0 will generate an interrupt at the end
of the transfer if interrupts is 1. The user program must provide the
interrupt service routine. DMA0 generates no interrupt if interrupts
is 0. The term increments must be 0 to increment the memory
address, and 1 to decrement the memory address.

The function returns 1 if successful, 0 if DMA0 is busy, �1 if the serial
port is busy, and �2 if channel is not 0 or 1.

� uint DMA0_MM(ulong dst, ulong src, uint count,
int mode, int interrupts)

Initiates a transfer using DMA0 to copy count bytes from absolute
memory locations starting at src to absolute memory locations starting
at dst. The logical memory address for ordinary arrays may be
converted to a physical address with phy_adr(array). Simply pass
the array name directly for xdata arrays. DMA0 will generate an
interrupt at the end of the transfer if interrupts is 1. The user
program must provide the interrupt service routine. DMA0 generates
no interrupt if interrupts is 0. The term mode must be 0 for cycle-
stealing transfers, and 1 for burst transfers.

The function returns 1 if successful, and 0 if DMA0 is busy.

� uint DMA0_MIO(uint ioaddr, ulong memaddr,
uint count, int interrupts, int increments)

Initiates a transfer using DMA0 to write count bytes from absolute
memory locations starting at memaddr to the I/O port designated by
ioaddr. The external device must generate negative-going /DREQ0
pulses for each byte transferred. The logical memory address for
ordinary arrrays may be converted to a physical address with
phy_adr(array). Simply pass the array name directly for xdata
arrays. DMA0 will generate an interrupt at the end of the transfer if
interrupts is 1. The user program must provide the interrupt service
routine. DMA0 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA0 is busy.

Dynamic C 5.x5-20 s Other Libraries

� uint DMA0_IOM(ulong memaddr, uint ioaddr,
uint count, int interrupts, int increments)

Initiates a transfer using DMA0 to read count bytes from the I/O port
designated by ioaddr to the absolute memory locations starting at
memaddr. The external device must generate negative-going /DREQ0
pulses for each byte transferred. The logical memory address for
ordinary arrays may be converted to a physical address with
phy_adr(array). Simply pass the array name directly for xdata
arrays. DMA0 will generate an interrupt at the end of the transfer if
interrupts is 1. The user program must provide the interrupt service
routine. DMA0 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA0 is busy.

� uint DMA1_MIO(uint ioaddr, ulong memaddr,
uint count, int interrupts, int increments)

Initiates a transfer using DMA1 to write count bytes from absolute
memory locations starting at memaddr to the I/O port designated by
ioaddr. The external device must generate negative-going /DREQ1
pulses for each byte transferred. The logical memory address for
ordinary arrays may be converted to a physical address with
phy_adr(array). Simply pass the array name directly for xdata
arrays. DMA1 will generate an interrupt at the end of the transfer if
interrupts is 1. The user program must provide the interrupt service
routine. DMA1 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA1 is busy.

� uint DMA1_IOM(ulong memaddr, uint ioaddr,
uint count, int interrupts, int increments)

Initiates a transfer using DMA1 to read count bytes from the I/O port
designated by ioaddr to the absolute memory locations starting at
memaddr. The external device must generate negative-going /DREQ1
pulses for each byte transferred. The logical memory address for
ordinary arrays may be converted to a physical address with
phy_adr(array). Simply pass the array name directly for xdata
arrays. DMA1 will generate an interrupt at the end of the transfer if
interrupts is 1. The user program must provide the interrupt service
routine. DMA1 generates no interrupt if interrupts is 0. The term
increments must be 0 to increment the memory address, and 1 to
decrement the memory address.

The function returns 1 if successful, and 0 if DMA1 is busy.

Function Reference Other Libraries s 5-21

FK.LIB
These are LCD and keypad support functions for use without the real-time
kernel (RTK).

� int fk_helpmsg(char **hptr)

Displays a series of help messages when the HELP key is pressed. The
current display is saved and each message string is displayed for
1.8 seconds, then the previous display is restored. The input should be
an array of strings declared like this.

char *hptr[]={�Str 1�,�Str 2",...,�StrN�,��};

The last string must be null. The function returns non-zero if help is
off, and zero if help is on.

� void fk_monitorkeypad()

Monitors the keypad for keys pressed. This function should be called
from an SRTK or RTK high-priority task. It sets global variable
fk_tkey to values from 1 to 12 depending on the key pressed. The
value is 0 if no key was pressed. The function also monitors for the
2-key reset combination. If a reset combination is detected, the unction
will not return but will force a watchdog timeout. There is no buffer.
Key presses should be processed within 100 milliseconds or they will
be lost.

� int fk_item_alpha(char *s1, char *var,
int wdsize)

Modifies a string using the five-key system. The term *s1 is a string
containing a prompt. The term *var is the string to be displayed and/
or modified. The function returns 0 if not done, and 1 if done, and
returns 1 or 0 in global variable fk_newmenu.

� int fk_item_int(char *string, int *num,
int lower, int upper)

Displays/modifies an integer number using the five-key system. The
term *string is a printf format having the form %nu where n is 1
digit, for example, %5d. The term *num is the integer to be displayed
and/or modified. The arguments upper and lower are the upper and
lower limits for the number. The function returns 0 if not done, and 1 if
done, and returns 1 or 0 in global variable fk_newmenu.

� int fk_item_uint(char *string, uint *num,
uint lower, uint upper)

This function is the same as fk_item_int, but applies to unsigned
integers. (Remember that uint is a convention in this manual only and
is not a C keyword.)

Dynamic C 5.x5-22 s Other Libraries

� int fk_item_float(char*s1, float *num,
float lower, float upper)

Displays/modifies a floating-point number using the five-key system.
The term *s1 is a printf format for displaying the number. The
format code should be in the form of %n.mf. The displayed line
appears as follows.

vvvvvv wwww.yyyy

where vvvvv is a prompt string, wwww is n chars long, and yyyy is m
chars long. The value n must be at least 1. The sum n + m cannot
exceed 9. The default is n = 5 and m = 2. The term *num is the
floating-point number to be displayed and/or modified. The arguments
upper and lower are the upper and lower limits for the number. This
function will work for numbers in the ranges [1E6,�1E�4], [1E�4,1E6]
with the appropriate format specification.

The function returns 0 if not done, and 1 if done, and returns 1 or 0 in
global variable fk_newmenu.

� int fk_item_enum(char *prompt, int *choice,
char *s1,...*sn, ��)

Allows the user to choose from a list of null-terminated strings (maxi-
mum 20). The string *prompt must contain a string field code (%s or
%ns) used to print the strings. The last of the strings (after *s1, ...
*sn) must be null. The term *choice returns the choice made by the
user, from 0 to (n - 1). The function returns 0 if not done, and 1 if
done, and returns 1 or 0 in global variable fk_newmenu.

� int fk_item_setdate(struct tm *time)

A five-key function to modify the day, month and year fields of a tm
structure. The term *time is the structure to be modified. The
function returns 0 if not done, and 1 if done, and returns 1 or 0 in
global variable fk_newmenu.

� int fk_item_settime(struct tm *time)

A five-key function to modify the hour, minute and second fields of a
tm structure. The term *time is the structure to be modified. The
function returns 0 if not done, and 1 if done, and returns 1 or 0 in
global variable fk_newmenu.

Function Reference Other Libraries s 5-23

XP88XX.LIB
These are stepper motor support functions.

� uint sm_bdaddr(int jumpers)

Returns the PLCBus address for a stepper motor card for the given
jumper settings, as defined at H4. The function returns PLCBus
address for card.

� int sm_poll(uint bdaddr)

Given a PLCBus address for a stepper motor card, the function returns
0 if the board is found, and 1 if not.

� void sm_hitwd(int index)

Hits the MAX705 watchdog by executing a counter-read cycle.
index: is the expansion board index.

� int sm_find_boards()

Polls all 16 possible motor board addresses and loads the addresses of
those found into the array sm_addr. The addresses found will be
stored in the array in order from lowest jumper setting found to highest
(0�15). Corresponding arrays of status bytes and service flags are
initialized.

Returns the number of boards found. The element following the last
address found is set to 0xFFFF. The control register is initialized to a
value of 0xA7 on all boards found. The function returns an integer
representing the number of stepper motor boards that respond to the
poll.

� uint smq_read16(int index)

Returns the entire 16-bit number of the quadrature counter. index is a
number from 0 to 15 representing the sequence of stepper motor boards
found by sm_find_boards. The board with the lowest jumper setting
will be at position 0, the next lowest at 1, etc. The function returns the
16-bit value of the quadrature counter.

� char smq_read8(int index)

Returns the low byte of the quadrature counter. index is a number
from 0 to 15 representing the sequence of stepper motor boards found
by sm_find_boards. The board with the lowest jumper setting will
be at position 0, the next lowest at 1, etc. The function returns the
lower byte of the counter.

Dynamic C 5.x5-24 s Other Libraries

� void sm_board_reset(int index)

Performs a hardware reset on the controller and encoder. Disables the
driver and sets it to dual-phase mode. Sets the register select lines to
00. index is a number from 0 to 15 representing the sequence of
stepper motor boards found by sm_find_boards. The board with the
lowest jumper setting will be at position 0, the next lowest at 1, etc.

� void smq_hardreset(int index)

Sends a hardware reset command to the quadrature counter. Resets the
counter to zero. index is a number from 0 to 15 representing the
sequence of stepper motor boards found by sm_find_boards. The
board with the lowest jumper setting will be at position 0, the next
lowest at 1, etc.

� void smc_hardreset(int index)

Sends a hardware reset command to the PCL-AK. This stops the
output and clears the internal registers. index is a number from 0 to
15 representing the sequence of stepper motor boards found by
sm_find_boards. The board with the lowest jumper setting will be at
position 0, the next lowest at 1, etc.

� void smc_softreset(int idx)

Sends a software reset command to the PCL-AK. This stops the output
without clearing the internal registers. index is a number from 0 to 15
representing the sequence of stepper motor boards found by
sm_find_boards. The board with the lowest jumper setting will be at
position 0, the next lowest at 1, etc.

� void smc_cmd(int index, int cmd)

Writes to the command register in the PCL-AK controller. index is a
number from 0 to 15 representing the sequence of stepper motor boards
found by sm_find_boards. The board with the lowest jumper setting
will be at position 0, the next lowest at 1, etc.

� void smc_setspeed(int index, int s1, int s2)

Sets the high and low speed registers to the given numbers. The
multiplier register is set to 732 to make the speed values in pulses per
second. The pulse output is set to on, no ramp-down IRQ, and normal
polarity. index is a number from 0 to 15 representing the sequence of
stepper motor boards found by sm_find_boards. The board with the
lowest jumper setting will be at position 0, the next lowest at 1, etc. s1
is the fast rate in pulses per second, and s2 is the slow rate.

Function Reference Other Libraries s 5-25

� void smc_manual_move(int index,int dir,
int speed)

Starts a manual move operation. The motor will move until a deceler-
ating stop command, a software reset (smc_softreset) is issued, or
an EL or ORG pulse is detected (if enabled). index is a number from
0 to 15 representing the sequence of stepper motor boards found by
sm_find_boards. The board with the lowest jumper setting will be at
position 0, the next lowest at 1, etc. dir is the move direction: 1 =
forward, 0 = backward; speed: 1 = fast mode (R2 value), 0 = slow
mode (R1 value).

� void smc_seek_origin(int index,int dir,
int speed)

Moves motor until an origin pulse is detected. index is a number from
0 to 15 representing the sequence of stepper motor boards found by
sm_find_boards. The board with the lowest jumper setting will be at
position 0, the next lowest at 1, etc. dir is the move direction: 1 =
forward, 0=backward; speed: 1 = fast mode (R2 value), 0 = slow
mode (R1 value).

� void smc_setmove(int index,long R0,int R1,
int R2,int R4,int R6,int R7)

Sets up the registers of the PCL-AK for a move operation. index is a
number from 0 to 15 representing the sequence of stepper motor boards
found by sm_find_boards. The board with the lowest jumper setting
will be at position 0, the next lowest at 1, etc. R0: number of pulses to
move; R1: low-speed move rate; R2: high-speed move rate; R4:
acceleration rate; R6: ramp-down point; R7: multiplier register (set to
732 for R1 and R2 in pulses per second).

� uint smcq_moveto(int index, uint dest,
int dir, uint acc)

Manually moves the motor until the encoder reaches a given value.
The move is done at the rate as specified in R1 (slow rate) of the
controller. For example,

smcq_moveto(myaddr, 5000, 1, 25);

moves forward until the encoder is read in the range 4075�5025.

The move speed, encoder resolution, and motor degrees/phase
will effect how tightly the accuracy may be confidently applied.
It is possible to miss a stop point if too tight an accuracy is
applied. The encoder should be read after the operation
(allowing time for the motor to come to a stop) to ensure its
location is accurate.

!

Dynamic C 5.x5-26 s Other Libraries

index is a number from 0 to 15 representing the sequence of stepper
motor boards found by sm_find_boards. The board with the lowest
jumper setting will be at position 0, the next lowest at 1, etc. dest is
the encoder value to stop at; dir is the move direction: 1 = forward, 0
= backward; acc is the accuracy of the stop value.

The function returns the last encoder value read (when the decision to
stop was made). Inertia and step locations will make the final resting
place value differ from this number.

� char smc_stat0(int index)

Reads the status register at address 0 (A1 = A0 = 0) on the PCL-AK
controller. index is a number from 0 to 15 representing the sequence
of stepper motor boards found by sm_find_boards. The board with
the lowest jumper setting will be at position 0, the next lowest at 1, etc.
The function returns the value from the STAT0 register on the PCL-
AK.

� char smc_stat3(int index)

Reads the status register at address 1 (A1 = A0 = 1) on the PCL-AK
controller. index is a number from 0 to 15 representing the sequence
of stepper motor boards found by sm_find_boards. The board with
the lowest jumper setting will be at position 0, the next lowest at 1, etc.
The function returns the value from the STAT3 register on the PCL-
AK.

� void sm_ctlreg(int index, int dat)

Writes a value dat to the write-only control register on the stepper
motor expansion card. Updates the shadow variable for register.
index is a number from 0 to 15 representing the sequence of stepper
motor boards found by sm_find_boards. The board with the lowest
jumper setting will be at position 0, the next lowest at 1, etc.

� void sm_drvoe(int index,int onoff)

Turns the motor driver output on or off. index is a number from 0 to
15 representing the sequence of stepper motor boards found by
sm_find_boards. The board with the lowest jumper setting will be at
position 0, the next lowest at 1, etc. onoff: 0: off, 1: on.

The function returns None.

� void sm_led(int index, int onoff)

Turns the user LED on or off. index is a number from 0 to 15
representing the sequence of stepper motor boards found by
sm_find_boards. The board with the lowest jumper setting will be at
position 0, the next lowest at 1, etc. onoff: 0: off, 1: on.

Function Reference Other Libraries s 5-27

� sm_sel00(int index)

Sets the select bits in the write only register on the stepper motor
controller expansion board to 00. Updates the shadow register for this
latch. index is a number from 0 to 15 representing the sequence of
stepper motor boards found by sm_find_boards. The board with the
lowest jumper setting will be at position 0, the next lowest at 1, etc.

� sm_sel01(int index)

Sets the select bits in the write only register on the stepper motor
controller expansion board to 01. Updates the shadow register for this
latch. index is a number from 0 to 15 representing the sequence of
stepper motor boards found by sm_find_boards. The board with the
lowest jumper setting will be at position 0, the next lowest at 1, etc.

� sm_sel10(int index)

Sets the select bits in the write only register on the stepper motor
controller expansion board to 10. Updates the shadow register for this
latch. index is a number from 0 to 15 representing the sequence of
stepper motor boards found by sm_find_boards. The board with the
lowest jumper setting will be at position 0, the next lowest at 1, etc.

� sm_sel11(int index)

Sets the select bits in the write-only register on the stepper motor
controller expansion board to 11. Updates the shadow register for this
latch. index is a number from 0 to 15 representing the sequence of
stepper motor boards found by sm_find_boards. The board with the
lowest jumper setting will be at position 0, the next lowest at 1, etc.

� void sm_int()

Stepper motor controller general interrupt service routine (ISR).
Checks the status of all boards listed in the array sm_addr for an
interrupt request (updates sm_stat). When an interrupt request is
detected, the service array flag (sm_flags) is set, and the stepper
motor board is issued a software reset. This reset deactivates the
interrupt request emanating from the controller. The service flags are
monitored by the master program to determine when an operation has
been completed.

Perform the following steps to exercise this function.

1. Call sm_find_boards at the beginning of the program.

2. Add the following define statement to link this function to the
PLCBus ISR.

#define USE_MOTORCARD // activate motor_int isr

Dynamic C 5.x5-28 s Other Libraries

3. Enable the PLCBus interrupt (/AT line) with the following
statements at the beginning of the program.

relocate_int1();// Relocates the interrupt vector
outport(ITC,(inport(ITC)|0x02));// Enables IRQ #1

Replace the code between the labels mirq and fin with your own
code to do all motor processing in the background.

� void set82adr(int address)

Sends a two-byte address across the PLCBus (for 8 × 2 mode).

� void set81adr(int addr)

Sends the last byte of a two-byte address across the PLCBus (for 8 × 2
mode).

IOEXPAND.LIB
These are support functions for the BL1100 expansion boards. They are
divided into two classes.

1. Functions that are hard-coded for default base addresses, 0xFxxx.

2. Functions that allow users to specify a board by its node number.

The former class is faster, but is limited to systems with one expansion
board; the latter class, therefore, should be limited to multiple expansion
board applications.

There is a structure of default addresses to improve lookup speeds for
Class 2 functions. There is a structure that holds the default addresses.
Instead of specifying a node number (0�3), specify �1. This will load the
correct default addresses. The second set of functions allows for stacking
of up to four expansion boards on top of the BL1100.

The board addresses are set through jumper J10.

� int exp_init(int ppia, int ppib, int ppicu,
int ppicl)

Initializes the PIO ports of a BL1100 expansion card with the default
address of 0xFxxx. The U5 PPI uses mode 0 or the basic I/O mode.
ppia, ppib, ppicu,and ppicl are output values for the PPI output
register. Configures Port A as input if ppia = �1, and Port B as input if
ppib = -1. Configures port C upper nibble as inputs if ppicu = �1;
and port C lower nibble as inputs if ppicl = �1. All PPI output ports
are reset to low when the mode is changed. It is important to output a
correct value to the output port right after the mode is changed.

$ Refer to the XP8100 and XP8200 User�s Manual for the
proper board addresses.

Function Reference Other Libraries s 5-29

� int mux_ch(int chan)

Sets the DG509A multiplexer (U17) of the BL1100 expansion card
with the default address of 0xFxxx. chan is 0 to 3 for (AN0�, AN0+)
to (AN3�, AN3+), respectively, to multiplex on (MUX-DA,
MUX-DB).

� int ad20_mux(int chan)

Sets the multiplexer for the 20-bit AD7703 of the BL1100 expansion
card with the default address of 0xFxxx. Channels 0 to 3 select
unipolar operation (0 to 2.5 volts) for (AN0�, AN0+) to (AN3�,
AN3+), respectively, while channels 4 to 7 select bipolar operation
(-2.5 to 2.5 volts) for (AN0�, AN0+) to (AN3�, AN3+), respectively.

� int ad20_rdy()

Tests AD7703 DRDY status from RDTTL bit 1. The function returns 0
if the AD20 is ready, or 1 if AD20 is busy.

� int ad20_cal(int mode)

Calibrates the AD7703 on the BL1100 expansion card with the default
address of 0xFxxx. Mode 0 calibration does not use the multiplexer.
Mode 1 calibration uses the multiplexer to get zero and full scale on
Ain. Mux ch0 is the A/D signal to be measured. Mux ch1 is Ain for
the Mode 1 first step to calibrate the system offset. Mux ch2 is Ain for
Mode 1 second step to calibrate the system gain. Mode 2 calibration
uses the current channel to get Ain as zero to calibrate the system
offset.

The following shows the state of SC1 and SC2 during calibration:

Mode SC1 SC2 Cal type Zero FS Steps
 0 0 0 self-cal AGND REF+1
1 1 1 system offset Ain 1st of 2
1 0 1 system gain Ain 2nd of 2
2 1 0 system offset Ain REF+1

The function returns 0, if calibration was completed, or �1, if error
during calibration.

� long ad20_rd()

Reads 20-bit data from the AD7703 serial data port. The 125-millisec-
ond step response time of AD7703 dictates that a time delay should be
guaranteed after a multiplexer switching. A/D data will be valid when
DRDY is low for data output at a rate up to 4 kHz. The polarity and
channel to read should be set previously with ad20_mux. Ain ranges
from 0 to 2.5 volts for the unipolar mode (PA0 = 0). LSB = 2.5 volts/
1048576 = 2.384 microvolts. Ain ranges from �2.5 to +2.5 volts for

Dynamic C 5.x5-30 s Other Libraries

the bipolar mode (PA0 = 1). LSB = 5 volts/1048576 = 4.768 microvolts.

The function returns 20-bit A/D data. For the unipolar mode, 0x00000
= AGND, 0x7FFFF = 1.25 volts and 0xFFFFF = 2.5 volts. For the
bipolar mode, 0x00000 = �2.5 volts, 0x7FFFF = AGND and 0xFFFFF
= 2.5 volts.

� int exp_init_n(int node, int ppia, int ppib,
int ppicu, int ppicl, int def)

Initializes the PIO port of a BL1100 expansion card corresponding to
the specified node. Node is 0 to 3 for node addresses 0xCxxx to
0xFxxx, respectively. If node equals -1, the function uses the default
address saved in def_na. If def equals 1, the node is saved as the
default node in def_na. If def equals 0, the node is not saved. The
function returns 0 if initialization is okay, or �1 if an unknown mode is
requested.

� int get_na(int node, struct node_addr *na)

Gets the node address from the specified node (0�3). The function
returns 0 if node is proper; or �1 if node is out of range. Node address
data are returned in struct node_addr *na.

� int set_def_na(int node)

Sets node address to default node address. The function returns data
from get_na.

� int get_def_na(struct node_addr *na)

Gets the default node address. The function returns the node number.

� int mux_ch_n(int node, int chan, int def)

Sets DF509A multiplexers on specified BL1100 expansion card node.
node is 0 to 3 for address 0xCxxx to 0xFxxx, respectively. chan is 0
to 3 for (AN0�, AN0+) to (AN3�, AN3+), respectively. If node equals
�1, the function uses the default address saved in def_na. If def
equals 1, the node is saved as default node in def_na. If def equals 0,
the node is not saved. The function returns 0 if the mux setup is okay,
or �1 if node is out of range.

$ Consult the XP8100 and XP8200 User�s Manual for the
address configuration.

Function Reference Other Libraries s 5-31

� int ad20_mux_n(int node, int chan, int def)

Sets the DG509A multiplexer for the 20-bit AD7703 of a BL1100
expansion card. node 0�3 specifies the node address 0xCxxx to
0xFxxx, respectively. chan 0�3 selects unipolar operation (0 to
2.5 volts) for (AN0�, AN0+) to (AN3�, AN3+), respectively. chan
4�7 selects bipolar operation (�2.5 to +2.5 volts) for (AN0�, AN0+) to
(AN3�, AN3+), respectively. If node equals �1, the function uses the
default address saved in def_na. If def equals 1, the node is saved as
the default node in def_na. If def equals 0, the node is not saved.
The function returns 0 if successful, or �1 for invalid node.

� int ad20_rdy_n(int node)

Tests AD7703 DRDY status from RDTTL bit 1 of a specified BL1100
expansion card node. node 0�3 specifies the node addresses 0xCxxx
to 0xFxxx, respectively. If node equals �1, the function uses the
default node saved in def_na. The function returns 0 if the AD20 is
ready, or �1 if the AD20 is busy or node is out of range.

� int ad20_cal_n(int node, int mode, int def)

Calibrates the AD7703 on a specified BL1100 expansion card. node
0�3 specifies the node address 0xCxxx to 0xFxxx, respectively. If
node equals �1, the function uses the node saved in def_na. If def
equals 1, the node is saved as default node in def_na. If def equals 0,
the node is not saved. Mode 0 calibration does not use the multiplexer.
Mode 1 calibration uses the multiplexer to get zero and full scale on
Ain. Mux ch0 is the A/D signal to be measured. Mux ch1 is Ain for
the Mode 1 first step to calibrate the system offset. Mux ch2 is Ain for
Mode 1 second step to calibrate the system gain. Mode 2 calibration
uses the current channel to get Ain as zero to calibrate the system
offset. The following shows the state of SC1 and SC2 during calibra-
tion.

Mode SC1 SC2 Cal type Zero FS Steps
0 0 0 self-cal AGND REF+1
1 1 1 system offset Ain 1st of 2
1 0 1 system gain Ain 2nd of 2
2 1 0 system offset Ain REF+1

The function returns 0 if calibration was completed, or �1 if there was
an error during calibration.

Dynamic C 5.x5-32 s Other Libraries

� long ad20_rd_n(int node, int def)

Reads 20-bit data from the AD7703 serial data port. The 125-millisec-
ond step response time of AD7703 dictates that a time delay should be
guaranteed after a multiplexer switching. A/D data will be valid when
DRDY is low for an output data rate up to 4 kHz. The polarity and
channel to read should be set previously with ad20_mux. Ain ranges
from 0 to 2.5 volts for the unipolar mode (PA0 = 0). LSB = 2.5 volts/
1048576 = 2.384 microvolts. Ain ranges from �2.5 to +2.5 volts for
the bipolar mode (PA0 = 1). LSB = 5 volts/1048576 = 4.768 micro-
volts. node 0�3 specifies the node address 0xCxxx to 0xFxxx,
respectively. If node equals �1, the function uses the node saved in
def_na. If def equals 1, the node is saved as the default node in
def_na. If def equals 0, the node is not saved.

The function returns 20�bit A/D data. For the unipolar mode, 0x00000
= AGND, 0x7FFFF = 1.25 volts and 0xFFFFF = 2.5 volts. For the
bipolar mode, 0x00000 = �2.5 volts, 0x7FFFF = AGND and 0xFFFFF
= 2.5 volts. Returns �1 for an invalid node.

KDM.LIB
These KDM (keyboard/display module) functions provide software drivers
for KDM keypads, the text LCD, the graphic LCD, the beeper, and the
timer that drives the keypad. The beeper also drives the real-time kernel
(RTK) when RUNKERNEL is defined.

� int lk_kxinit()

Initializes variables, buffers and hardware driver associated with
servicing the KDM keypad.

� int lk_loadtab(int *tab, int tab_size)

Loads keypad numerical table values. Used to rearrange the keypad
keys. tab points to an integer array containing the new keypad
arrangement. tab_size is the table size to change. For example,
new_table[] = {4,3,2,1,....} will rearrange the ordering of the
first four keys.

� int lk_settab(char flag)

Sets the keypad translate table for keypad sizes greater than 24.

� int lk_keyw(char flag)

Writes to specified bits in the key register.

Function Reference Other Libraries s 5-33

� int lk_kxget(char mode)

Gets character from the KDM keypad. If mode = 0, removes the
character from the keypad buffer and returns it. If mode ! = 0, returns
the character (if available), but does not remove it from the keypad
buffer. The function returns the keypad character pressed, or �1 if the
keypad buffer is empty.

� int lk_setbeep(int count)

Sets up the variable that is used for the KDM beeper.

� int lk_led(int mode)

Turns LEDs on the KDM on/off without conflicting with the keypad
driver. mode = 0 turns off the LEDs. mode =1 turns on the yellow LED.
mode = 2 turns on the green LED. mode = 3 turns on both LEDs. The
function returns the mode that was passed.

� int lk_tdelay(int delay)

Convenient delay mechanism that is tied to timer1 periodic interrupt.

� int lk_int_timer1()

Service routine for timer1 interrupt. Drives the beeper and the
keypad. Also drives the real-time kernel if RUNKERNEL is defined.

� int lg_init_keypad()

Initializes timer1, KDM keypad driver and the graphic LCD.

� int lk_init_keypad()

Initializes timer1, keypad driver and the LCD.

� void lk_wr(int x)

Writes low byte of x to LCD register in the high byte of x.

� int lk_rd(int addr)

Reads data from the LCD read register addr. The function returns the
data from LCD read register addr.

� int lk_init()

Initializes LCD on the KDM. Initializes software variables associated
with use of the LCD.

� int lk_cmd(int cmd)

Sends command in the lower byte of cmd to the LCD register specified
by the upper byte of cmd.

� int lk_wait()

Waits for appropriate LCD unit to clear its busy flag. The function
returns 0 or 1 depending on the LCD controller.

Dynamic C 5.x5-34 s Other Libraries

� int lk_char(char x)

Sends one character to data register of the appropriate LCD.

� int lk_ctrl(char x)

Sends one character to control register of the appropriate LCD.

� int lk_putc(char x)

Low-level driver (printf analog) for the LCD. Sends a character to
the LCD and updates software variables for storing the LCD screen
status.

� int lk_nl()

Generates a new line on the LCD screen.

� int lk_pos(int line, int col)

Positions LCD cursor to line and col location.

� int lk_printf(char *fmt, ...)

This is the printf analog for the LCD. The following escape se-
quences are available.

esc p n mm positions cursor to line n and column mm. Example:

lk_printf(�\x1bp234�);

means line 2, column 34. Lines are numbered 0, 1, 2, 3.
Columns 0,1,..39.

esc 1 Turns cursor on
esc 0 Turn cursor off
esc c Erases from cursor position to end of line
esc b Enables blinking cursor mode
esc n Disables blinking cursor mode
esc e Erases display and homes cursor

� void lk_cgram(char *p)

Special character generator for the LCD. *p (first byte) is the number
of bytes to store (up to 64 for 8 characters). The lower five bits of each
byte make one row of the character from left to right and from top to
bottom. The eighth row of each is in the cursor position.

� int lk_stdcg()

Loads a table of special characters, lk_stdchars, to the LCD.

Function Reference Other Libraries s 5-35

� int lk_run_menu(char *call_menu,
struct lk_menu *menu, int index)

Menuing scheme for the KDM unit. The following mtype codes in the
menu structures are available: codes: 0�end of menu, 1�view
floating, 2�view floating and adjust in limits, 3�view floating and
enter new value on enter, 4�like 2 but call specified function passing
pointer after each step, 5�like 3 but call specified function passing
pointer to new value, 8�view logical, 9�view logical and adjust true/
false, 10�like 9 but call specified function passing pointer to variable,
16�view date/time, 17�view/ modify date/time, 18�view/ modify
date/time and call routine, 20�view time (16-bit), 21�view/modify
time (16-bit), 22�view/modify time (16-bit) and then call routine,
32�call a new menu (msg is the top line name for new menu, valptr
is the pointer to the new menu structure, the index is always passed as
0), 40�call a function (msg is displayed, ptr and limit are ignored).
The string call_menu is initially printed when the menu is entered.
The pointer menu points to the lk_menu structure. The index is the
starting point in the menu, often zero. The run_menu function returns
the last value of the index.

� void lk_setdate(char *msg, struct tm *dat)

Sets date data and prints to the LCD. Also prints msg to the LCD.
Used by lk_run_menu.

� int lk_chkdat(struct tm *dat)

Checks validity of date data. May change day of the month. The
function returns 0 if date data is okay, or 1 for invalid date data.

� void lk_showdate(char *msg, struct tm *tmm)

Displays date data and msg to the LCD.

� uint lk_settime(char *msg, uint time)

Sets time and prints to the LCD. Also prints msg to LCD.

� int lk_showtime(char *msg, uint time)

Displays msg and time data on the LCD.

� int st_hour(uint j)

Hour parser used by lk_run_menu. The function returns j/1800.

� int st_min(uint j)

Minutes parser used by lk_run_menu. The function returns
(j mod 1800)/30.

Dynamic C 5.x5-36 s Other Libraries

� int st_sec(uint j)

Seconds parser used by lk_run_menu. The function returns
2 × (j mod 30).

� uint mk_st(int hour, int min, int sec)

Time data builder used by lk_run_menu. The function returns
hour × 1800 + min × 30 + sec × 2.

� uint ad_st(uint t1, uint t2)

Time data adder used by lk_run_menu. The function returns adjusted
time data of the two times added together.

� int lk_secho()

Pulls character from key buffer and generates a short beep.

� int lk_lecho()

Pulls character from the keypad buffer and generates a long beep.

� void lk_viewl(char *fmt, char var)

Views a logical variable.

� float lk_getknum()

Gets a floating-point number from the keypad. The function returns the
floating-point number entered through the keypad.

� void lg_init()

Initializes the graphic LCD and its associated software variables.

� void lg_char(char x)

Writes a character to the graphic LCD.

� void lg_putc(char x)

Low-level driver (printf analog) for the graphic LCD. Puts char on
the graphic LCD and updates software variables that store the graphic
LCD screen status.

� void lg_nl()

Generates a new line on the graphic LCD screen.

� void lg_pos(int line, int col)

Positions cursor on the graphic LCD screen.

Function Reference Other Libraries s 5-37

� void lg_printf(char *fmt, ...)

This is the printf analog for the graphic LCD. The following escape
sequences are available.

esc p n mm positions cursor to line n and column mm. Example:

lg_printf(�\x1bp234�);

means line 2, column 34. Lines are numbered 0, 1, 2, 3.
Columns 0,1,..39.

esc 1 Turns cursor on
esc 0 Turn cursor off
esc c Erases from cursor position to end of line
esc b Enables blinking cursor mode
esc n Disables blinking cursor mode
esc e Erases display and homes cursor

� void Set_Display_Mode(int mode)

Sets the display mode of the graphic LCD. mode is
DISPLAY_TEXT (4) or DISPLAY_GRAPHICS (8).

� void Clear_GrTxt_Screen()

Clears the graphic LCD text screen.

� void Stall(int tix)

Software delay loop. Counts down tix × 10.

� void sta01()

Writes 4 to the LCD write register and waits for a 3 on the LCD read
register.

� void sta03()

Writes 4 to the LCD write register and waits for a 0x08 on the LCD
read register.

� void lg_wr(int x)

Writes data to graphic LCD register. The register value is in the high
byte and data value is in the low byte of x. Uses sta01 to wait for
clear to write.

� void lg_wr03(int x)

Writes data to graphic LCD register. The register value is in the high
byte and data value is in the low byte of x. Uses sta03 to wait for
clear to write.

� void lg_rd()

Waits for clear and reads the graphic LCD read register.

Dynamic C 5.x5-38 s Other Libraries

� void grp_home_area(char gal, char gah,
char ghl, char ghh)

Sets the graphic area by defining the home (ghl,ghh) and the area
(gal,gah).

� void text_home_area(char tal, char tah,
char thl, char thh)

Sets the text area by defining the home (thl,thh) and the area
(tal,tah).

� void Graph_Init()

Initializes the graphic LCD text and graphics areas.

� void Set_Pointer(int address, int ptr)

Sets the appropriate pointer by using the �pointer set� command.
address is the address to set the pointer to. ptr is the pointer to set: 1
= cursor, 2 = offset, 4 = address.

$ See page 25 of the Toshiba ST-LCD manual.

� int Text_Addr(int col, int row)

Computes location of text based on the row and col data.

The function returns

GRTXT_BASE_ADDRESS + row × LK_COLS + col .

� void Set_Auto_Mode(int mode)

Sets the graphic LCD into auto mode.

� void Set_Overlap_Mode(int mode)

Sets the graphic LCD to overlap mode.

� void Define_Cursor(int lines)

Defines the cursor for the graphic LCD.

� void Set_Pixel(int col, int row, int wr_mode)

Sets an LCD pixel to coordinates (col, row). wr_mode = 0 to clear,
wr_mode = 1 to set, and wr_mode = 2 to XOR. (0,0) is the lower left
corner. col ranges from 0 to 239; row ranges from 0 to 63.

� void Clear_Gr_Screen()

Erases the graphic palette by writing 0s to all addresses in the graphic
LCD RAM.

Function Reference Other Libraries s 5-39

� void Map_Bit_Pattern(int *config,
char *bitarray, int wr_mode)

Maps a bit pattern to the graphic LCD area. config points to an array
of 4-integer data defining the upper left corner (x,y) to start the pattern
and the width and height of the figure in dots. bitarray points to a
character data array that has �1� or �*� in each location to set a dot in.
Data appear in sequential order, starting at the top left corner, progress-
ing left to right and top to bottom. wr_mode = 0 to clear; wr_mode = 1
to set and wr_mode = 2 to XOR.

� void Draw_Line(int stx, int sty, int enx,
int eny, int wr_mode)

Draws a line from starting point (stx,sty) to end point (enx,eny).
wr_mode = 0 to clear, wr_mode = 1 to set and wr_mode = 2 to XOR.

� void Draw_Poly(int numpoints, int *point,
int wr_mode)

Draws a polygon by connecting successive points. numpoints is the
number of (x,y) coordinate pairs. point points to an integer array of
(x,y) coordinate pairs.

� void Draw_Axis(int ox, int oy, int ex, int ey,
int ticks_x, int ticks_y, int wr_mode)

Draws an axis with (ox,oy) as the axis origin. (ex,ey) are the highest
coordinates of the axis. ticks_x is the number of x-axis ticks.
ticks_y is the number of y-axis ticks.

� void Sin_Wave(int ox, int oy, int ex, int ey,
int cycles, int wr_mode)

Draws a sine wave with (ox,oy) as the sine-wave origin. (ex,ey) are
the highest possible coordinates of the sine wave. cycles is the
number of cycles to display.

LCD2L.LIB
These are LCD support functions. They support the 2 × 20 LCD on all
Z-World products that have an LCD port.

� void lc_wr(char data)

Low-level routine for writing char data to a control register of the
LCD. The control register accessed is embedded in char data.

� int lc_rd()

Low-level routine to read the LCD register LCDWR. The function
returns the busy flag in bit 7 and the address counter of the LCD in the
lower seven bits.

Dynamic C 5.x5-40 s Other Libraries

� void lc_init()

Initializes the PK2100 or PK2200 LCD by executing the recommended
LCD power-up protocol. Sets LCD for auto increment; display and
cursor on; and clears the display memory.

� int lc_cmd(int cmd)

Waits for LCD busy flag to clear, then sends cmd to the LCD command
register. The function returns 0 if successful in writing to the LCD, or
�1 if there is a timeout because the LCD is busy.

� int lc_wait()

Waits for the LCD busy flag to clear. The function returns 0 when the
LCD busy flag has cleared, or �1 if it times out after ten tries.

� void lc_char(char x)

Writes char x to the LCD data register.

� void lc_ctrl(char x)

Writes char x to the control register of the LCD. Unlike lc_wr, this
function waits for the busy flag of the LCD to clear before writing data
to an LCD control register.

� int lc_putc(char x)

Decodes char x for special command sequence for writing to the
LCD command or data registers. This function serves as the driver for
lc_printf.

� void lc_nl()

Moves the LCD cursor to the first column of the next line. If the
current line is the last LCD line, then the cursor position is only moved
to column 0 of the current line.

� void lc_pos(int line, int col)

Positions PK2100 LCD cursor at the specified line (0�3) and col
(0�19).

� void lc_printf(char *fmt, ...)

This is the printf analog for the PK2100 LCD.

� void lc_cgram(char *p)

Character matrix = 5 rows × 8 cols. p points to a data array with the
following format: first character is the number of bytes to store (8 bytes
per character) with a maximum of 64, the lower five bits of each byte
form one row of the character from left to right, and the eighth row per
special character is in the cursor position.

Function Reference Other Libraries s 5-41

� void lc_stdcg()

Loads eight special characters of arrows and lines to the LCD special
character location.

� void lcd_init_printf()

Initializes the LCD with lcd_init. Also initializes related variables
to allow for saving duplicate image of the LCD screen.

� void lcd_putc(char x)

Decodes char x for special command sequence for writing to the
LCD command or data registers. Serves as the driver for
lcd_printf. Like lc_putc except that shadow variables for the
LCD are also updated.

� void lcd_erase()

Erases entire LCD and homes cursor. LCD shadow variables are
updated.

� void lcd_erase_line(int line)

Erases a specified line on the LCD and updates shadow variables.

� void lcd_printf(long cursor, char *fmt, ...)

This is the printf analog for the LCD screen. Displays a string at a
specified starting position and leaves the cursor at a specified end
position. cursor bytes are Y1,X1,Y2,X2, where the most significant
byte, Y1, is the start line number (0, 1, 2 or 3); X1 the is start column
number (0, 1, 2...), and Y2 and X2 are the final line and column
coordinates. The upper four bits of Y2 are used to specify the final
state of the cursor (1 = on, 0 = off). Only cursor positioning takes
place if *fmt is a null string.

When lcd_printf runs, a semaphore is invoked to ensure that only
one execution thread is running through it, so it can be called from
various tasks without interference. Execution is suspended for 10 ticks
when the semaphore is busy.

A duplicate copy of the display contents and the cursor location is
updated in memory when lcd_printf prints to the LCD display. The
lcd_savscrn copies this image to a user-specified area.
lcd_resscrn copies the user-saved area back to the screen and the
image area. Using these routines, a task can interrupt the current thread
and save the current display, use the display in a new thread, and then
restore the original display.

� void lcd_savscrn(void* s)

Saves LCD screen image to vector identified by s.

Dynamic C 5.x5-42 s Other Libraries

� void lcd_resscrn(void* s)

Restores image stored in vector identified by s to the LCD.

PBUS_LG.LIB
This library contains the PLCBus support functions for the BL1100
controller and the PLCBus interface library for the BL1100 and the
BL1300 controllers. The library contains the functions necessary to access
PLCBus devices through PIO Port A on the BL1100. The library also
provides low-level PLCBus functions as well as high-level functions for
the relay and DAC expansion boards.

The bus must interface to the PIO port as follows:

PIO pin 0: STB PIO pin 4: D2
PIO pin 1: A3 PIO pin 5: D3
PIO pin 2: A2 PIO pin 6: D0
PIO pin 3: A1 PIO pin 7: D1

� void PBus12_Addr(int addr)

Sets the current address for the PLCBus . All read and write operations
will access this address until a new address is set. addr is the 12-bit
physical address with the first and third nibbles swapped (most
significant nibble in the lower four bits).

� void PBus4_Write(char data)

Writes 4-bit data on PLCBus . The address must be set by a call to
PBus12_Addr before calling this function. data should contain the
value to write in the lower four bits.

� int PBus4_Read0()

Reads 4 bits of data from the PLCBus using a BUSRD0 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns PLCBus data in the lower four bits (the
upper bits are undefined).

� int PBus4_Read1()

Reads 4 bits of data from the PLCBus using a BUSRD1 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns PLCBus data in the lower four bits (the
upper bits are undefined).

� int PBus4_ReadSp()

Reads 4 bits of data from the PLCBus using a BUSSPARE cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns PLCBus data in the lower four bits (the
upper bits are undefined).

Function Reference Other Libraries s 5-43

� int Relay_Board_Addr(int board)

Converts a logical relay board address to a physical PLCBus address.
board must be a number between 0 and 63, and represents the relay
board to access. This number has the binary form pppzyx where ppp
is determined by the board PAL number and x, y, and z are determined
by jumper J1 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4500, FPO4510, FPO4520, etc.; x, y,
and z correspond to jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx000y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Set_PBus_Relay(int board,int relay,
int state)

Sets a relay on an expansion bus relay board. board must be a number
between 0 and 63, and represents the relay board to access. This
number has the binary form pppzyx where ppp is determined by the
board PAL number and x, y, and z are determined by jumper J1 on the
board. ppp values of 000, 001, 010, etc., correspond to PAL numbers
of FPO4500, FPO4510, FPO4520, etc.; x, y, and z correspond to
jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 = closed, 1 = open).
relay is the relay number on the board (0�5 for XP8300 board; 0�7
for XP8400 board). state must be 1 to turn the relay on and 0 to turn
the relay off.

� int DAC_Board_Addr(int bd)

Converts a logical DAC board address to a physical PLCBus address.
bd must be a number between 0 and 63, and represents the DAC board
to access. This number has the binary form pppzyx where ppp is
determined by the board PAL number and x, y, and z are determined
by jumper J3 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4800, FPO4810, FPO4820, etc.; x, y,
and z correspond to jumper J3 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx001y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Write_DAC1(int val)

Loads Register A of DAC #1 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC1 is
called.

Dynamic C 5.x5-44 s Other Libraries

� void Write_DAC2(int val)

Loads Register A of DAC #2 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC2 is
called.

� void Latch_DAC1()

Moves the value from Register A of DAC 1 to the Register B. The
value in Register B represents the actual DAC output. The board
address must have been set previously with a call to PBus12_Addr,
and the value should have been loaded into Register A with a call to
Write_DAC1.

� void Latch_DAC2()

Moves the value from Register A of DAC #2 to Register B. The value
in Register B represents the actual DAC output. The board address
must have been set previously with a call to PBus12_Addr, and the
value should have been loaded into Register A with a call to
Write_DAC2.

� void Init_DAC()

Initializes DAC board and sets all output values to 0. Call this function
before writing data to the DAC. The board address must have been set
previously with a call to PBus12_Addr.

� void Set_DAC1(int val)

Sets DAC #1 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), V

OUT
 = (val/4096) ×

10.22 volts with Z-World default settings. In current-output mode (J1
pins 1-2 jumpered), I

OUT
 = (val/4096) × 22 milliamps with Z-World

default settings. The board address must have been set previously with
a call to PBus12_Addr.

� void Set_DAC2(int val)

Sets DAC #2 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), V

OUT
 = (val/4096) ×

10.22 volts with Z-World default settings. In current-output mode (J1
pins 1-2 jumpered), I

OUT
 = (val/4096) × 22 milliamps with Z-World

default settings. The board address must have been set previously with
a call to PBus12_Addr.

� void DAC_On()

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

Function Reference Other Libraries s 5-45

� void DAC_Off()

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void Reset_PBus()

Resets the PLCBus.

� int Poll_PBus_Node(int addr)

Polls a PLCBus device by performing a BUSRD0 cycle and checking
the low bit of the returned value. addr is the 12-bit physical address of
the device, with the first and third nibbles swapped.

The function returns 1 if node answers poll, 0 if not.

� void Reset_PBus_Wait()

Provides the minimum delay necessary for PLCBus expansion boards
after a bus reset, assuming a 9-MHz CPU. This delay will be insuffi-
cient for a faster CPU and must be increased.

PBUS_TG.LIB
These functions support the BL1000 controller. The PLCBus interface
library is provided for the BL1000. This library contains functions
necessary to access PLCBus devices through PIO Port B on the BL1000.
The library provides low-level PLCBus functions as well as high-level
functions for the relay and DAC expansion boards.

The bus must interface to the PIO port as follows.

PIO pin 0: D1 IO pin 4: A1
PIO pin 1: D0 PIO pin 5: A2
PIO pin 2: D3 PIO pin 6: A3
PIO pin 3: D2 PIO pin 7: STB

� void PBus12_Addr(int addr)

Sets the current address for the PLCBus. All read and write operations
will access this address until a new address is set. addr is the 12-bit
physical address with the first and third nibbles swapped (most
significant nibble in the low four bits).

The function returns None.

� void PBus4_Write(char data)

Writes 4-bit data on the PLCBus. The address must be set by a call to
PBus12_Addr before calling this function. data should contain the
value to write in the lower four bits.

Dynamic C 5.x5-46 s Other Libraries

� int PBus4_Read0()

Reads 4 bits of data from the PLCBus using a BUSRD0 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns the PLCBus data in the lower four bits
(the upper bits are undefined).

� int PBus4_Read1()

Reads 4 bits of data from the PLCBus using a BUSRD1 cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns the PLCBus data in the lower four bits
(the upper bits are undefined).

� int PBus4_ReadSp()

Reads 4 bits of data from the PLCBus using a BUSSPARE cycle. The
address must be set by a call to PBus12_Addr before calling this
function. The function returns the PLCBus data in the lower four bits
(the upper bits are undefined).

� int Relay_Board_Addr(int board)

Converts a logical relay board address to a physical PLCBus address.
board must be a number between 0 and 63, and represents the relay
board to access. This number has the binary form pppzyx where ppp
is determined by the board PAL number and x, y, and z are determined
by jumper J1 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4500, FPO4510, FPO4520, etc.; x, y,
and z correspond to jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx000y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Set_PBus_Relay(int board,int relay,
int state)

Sets a relay on an expansion bus relay board. board must be a number
between 0 and 63, and represents the relay board to access. This
number has the binary form pppzyx, where ppp is determined by the
board PAL number and x, y, and z are determined by jumper J1 on the
board. ppp values of 000, 001, 010, etc., correspond to PAL numbers
of FPO4500, FPO4510, FPO4520, etc.; x, y, and z correspond to
jumper J1 pins 1-2, 3-4, and 5-6, respectively (0 = closed, 1 = open).
relay is the relay number on the board (0�5 for XP8300 board; 0�7
for XP8400 board). state must be 1 to turn the relay on and 0 to turn
the relay off.

Function Reference Other Libraries s 5-47

� int DAC_Board_Addr(int bd)

Converts a logical DAC board address to a physical PLCBus address.
bd must be a number between 0 and 63, and represents the DAC board
to access. This number has the binary form pppzyx where ppp is
determined by the board PAL number and x, y, and z are determined
by jumper J3 on the board. ppp values of 000, 001, 010, etc., corre-
spond to PAL numbers of FPO4800, FPO4810, FPO4820, etc.; x, y,
and z correspond to jumper J3 pins 1-2, 3-4, and 5-6, respectively (0 =
closed, 1 = open). The resulting address is in the form pppx001y000z.

The function returns the PLCBus address of the board specified, with
the first and third nibbles swapped; this address may be passed directly
to PBus12_Addr.

� void Write_DAC1(int val)

Loads Register A of DAC #1 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC1 is
called.

� void Write_DAC2(int val)

Loads Register A of DAC #2 with the given 12-bit value. The board
address must have been set previously with a call to PBus12_Addr.
The value in val will not actually be output until Latch_DAC2 is
called.

� void Latch_DAC1()

Moves the value in Register A of DAC #1 to Register B. The value in
Register B represents the actual DAC output. The board address must
have been set previously with a call to PBus12_Addr, and the value
should have been loaded into Register A with a call to Write_DAC1.

� void Latch_DAC2()

Moves the value in Register A of DAC #2 to Register B. The value in
Register B represents the actual DAC output. The board address must
have been set previously with a call to PBus12_Addr, and the value
should have been loaded into Register A with a call to Write_DAC2.

� void Init_DAC()

Initializes DAC board and sets all output values to 0. Call this function
before writing data to the DAC. The board address must have been set
previously with a call to PBus12_Addr.

Dynamic C 5.x5-48 s Other Libraries

� void Set_DAC1(int val)

Sets DAC #1 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), VOUT = (val/4096) ×
10.22 volts with Z-World default settings. In current-output mode (J1
pins 1-2 jumpered), IOUT = (val/4096) × 22 milliamps with Z-World
default settings. The board address must have been set previously with
a call to PBus12_Addr.

� void Set_DAC2(int val)

Sets DAC #2 to the value specified in the lower 12 bits of val. In
voltage-output mode (J1 pins 2-3 jumpered), V

OUT
 = (val/4096) ×

10.22 volts with Z-World default settings. In current-output mode (J1
pins 1-2 jumpered), I

OUT
 = (val/4096) × 22 milliamps with Z-World

default settings. The board address must have been set previously with
a call to PBus12_Addr.

� void DAC_On()

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void DAC_Off()

Controls the high-side switch activation line. Only used with switch
option U10-LT1188.

� void Reset_PBus()

Resets the PLCBus.

� int Poll_PBus_Node(int addr)

Polls a PLCBus device by performing a BUSRD0 cycle and checking
the low bit of the returned value. addr is the 12-bit physical address of
the device, with the first and third nibbles swapped. The function
returns 1 if node answers poll, 0 if not.

� void Reset_PBus_Wait()

Provides the minimum delay necessary for PLCBus expansion boards
after a bus reset, assuming a 9-MHz CPU. This delay will be insuffi-
cient for a faster CPU and must be increased.

Function Reference Dynamic C Libraries s A-1

APPENDIX A: DYNAMIC C LIBRARIES

The libraries described in Chapter 1 include standard C string and math
functions in addition to general support functions specific to Z-World�s
controllers.

Dynamic C 5.xA-2 s Dynamic C Libraries

Dynamic C�s function libraries provide a way to bring in only those
portions of system code that a particular program uses. The file LIB.DIR
contains a list of all libraries known to Dynamic C. This list may be
modified by the user. In particular, any library created by a user must be
added to this list.

Libraries are �linked� with a user�s application through the #use directive.
Files identified by #use directives are nestable, as shown in Figure A-1.

...
#use x.lib
...
main(){
...
}
...
#use z.lib
...

...
#use y.lib
...
function
...
function
...
function
...
#use z.lib
...

Application X.LIB
...
......
...
.....
..
....

Y.LIB

...

......

...

.....

..

....

Z.LIB

BIOS

Figure A-1. Linking Nestable Files in Dynamic C

The file DEFAULT.H contains several lists of libraries to #use, one list for
each product that Z-World ships. Dynamic C usually knows which
controller is being used, so it selects the libraries appropriate to that
controller. These lists are the defaults. A programmer may find it conve-
nient or necessary to add or remove libraries from one or more of the lists.

The default libraries for a Z-World controller contain many function
names, global variable names, and in particular, many macro names. It is
likely that a programmer may try to use one of the Z-World names for a
newly written program. Unpredictable problems can arise. Z-World
recommends that DEFAULT.H be edited to comment out libraries that are
not needed.
Table A-1 lists the libraries included with Dynamic C. Other libraries,
LSTAR.LIB, MICROG.LIB, LGIANT.LIB, RG.LIB, SCOREZ1.LIB,
LPLC.LIB, and PS.LIB exist only for backward compatibility.

Function Reference Dynamic C Libraries s A-3

Table A-1. Libraries Included with Dynamic C

5KEY.LIB The basic “five-key system” for the PK2100 series and
PK2200 series controllers.

5KEYEXTD.LIB Extensions to the “five-key system.”

96IO.LIB Driver functions for the BL100’s DGL96 daughter
board.

AASC.LIB Abstract Asynchronous Serial Communication
functions.

AASCDIO.LIB STDIO-specific routines supporting the AASC library.

AASCSCC.LIB SCC-specific routines to support the AASC library. The
SCC is the Zilog 85C30 Serial Communication
Controller.

AASCUART.LIB XP8700 series support for the AASC library. The
XP8700 is formerly the RS232 PLCBus expansion
board.

AASCZ0.LIB Z0-specific routines to support the AASC library. Z0 is
the Z180 ASCI Serial Port 0.

AASCZ1.LIB Z1-specific routines to support the AASC library. Z1 is
the Z180 ASCI Serial Port 1.

AASCZN.LIB ZNet-specific routines to support the AASC library.

BIOS.LIB Contains prototypes of functions and declarations of
variables defined in, and used by, the BIOS.

BL1000.LIB Functions for the BL1000.

BL11XX.LIB Functions for the BL1100.

BL12XX.LIB Empty library.

BL13XX.LIB Functions for the BL1300.

BL14_15.LIB Functions for the BL1400 series and BL1500 series
controllers.

BL16XX.LIB Functions for the BL1600.

CIRCBUF.LIB Abstract data type functions for circular buffers (used by
the AASC driver).

CM71_72.LIB Functions for the CM7100 series and CM7200 series
core modules. These are formerly the SmartCore Z1 and
Z2.

CPLC.LIB Functions for PK2100, PK2200, and BL1600.

continued…

Dynamic C 5.xA-4 s Dynamic C Libraries

Table A-1. Libraries Included with Dynamic C (continued)

DC.HH This file contains definitions basic to, and required by,
Dynamic C. This file is required.

DEFAULT.H Contains lists of #use directives for various Z-World
controllers. Dynamic C automatically selects the list
appropriate for controller being programmed.

DMA.LIB Support functions for the Z180 on-chip DMA (direct
memory access) channels.

DRIVERS.LIB Driver functions for some hardware devices.

EZIO.LIB Driver functions for a board-independent unified I/O
space.

EZIOCMMN.LIB Common definitions for all EZIO… libraries.

EZIOPBDV.LIB PLCBus device drivers supporting the EZIO library.

EZIOPK23.LIB PK2300 function support for the EZIO library.

EZIOPLC.LIB PLCBus functions for boards that have native PLCBus
ports (BL1200 series, BL1600 series, PK2100 series,
and PK2200 series.

FK.LIB New “five-key system” support for the PK2100 series
and PK2200 series controllers. They are to be used with
cooperative multitasking (i.e., costatements).

IOEXPAND.LIB Driver functions for BL1100 series daughter boards.

KDM.LIB Driver functions for Z-World KDMs (keyboard/display
modules).

LCD2L.LIB Two-line LCD support for the PK2100 series and
PK2200 series controllers.

MATH.LIB Useful mathematical and trigonometric functions.

MISC.LIB Miscellaneous functions for KDM support.

MODEM232.LIB Modem functions for the PK2100 series and PK2200
series controllers. Used with Z0232.LIB,
S0232.LIB, XP87XX.LIB, NETWORK.LIB and
SCC232.LIB.

NETWORK.LIB Opto22 9-bit binary protocol to support master-slave
networking. Uses ASCI port 1 of the Z180.

PBUS_LG.LIB Functions that operate the PLCBus with a BL1100.

PBUS_TG.LIB Functions that operate the PLCBus with a BL1000.

continued…

Function Reference Dynamic C Libraries s A-5

Table A-1. Libraries Included with Dynamic C (concluded)

PK21XX.LIB Functions for the PK2100.

PK22XX.LIB Functions for the PK2200.

PLC_EXP.LIB PLCBus functions for boards that have native PLCBus
ports (BL1200 series, BL1600 series, PK2100 series,
and PK2200 series).

PRPORT.LIB Functions that implement a parallel port communication
protocol between a controller and a PC.

PWM.LIB Pulse-width modulation functions.

RTK.LIB Real-time kernel (RTK).

S0232.LIB Serial communication driver for SIO port 0 on the
BL1100 series controller.

S1232.LIB Serial communication driver for SIO port 1 on the
BL1100 series controller.

SCC232.LIB Serial communication driver for the ports on the SCC
chip, Zilog’s 85C30 Serial Communication Controller.

SRTK.LIB Simplified real-time kernel for all controllers.

STDIO.LIB Functions relating to the STDIO window in Dynamic C.

STRING.LIB This file contains functions for manipulating strings.

SYS.LIB General system functions.

VDRIVER.LIB Virtual driver functions (for all controllers).

XMEM.LIB Functions for moving information to and from extended
memory, as well as other functions (such as address
computation) related to extended memory.

XP82XX.LIB Driver functions for the XP8200 series PLCBus board.

XP87XX.LIB Serial communication functions for an XP8700 series
PLCBus board.

XP87XX2.LIB Serial communication functions that support a second
XP8700 (see XP87XX.LIB below).

XP88XX.LIB Functions for the XP8800 series PLCBus device.

Z0232.LIB Serial communication driver for Z0. Z0 is the Z180
ASCI Serial Port 0.

Z1232.LIB Serial communication driver for Z1. Z1 is the Z180
ASCI Serial Port 1.

ZNPAKFMT.LIB Lower level functions supporting the ZNet.

Dynamic C 5.xA-6 s Dynamic C Libraries

Function Reference Using AASC Libraries s B-1

APPENDIX B: USING AASC LIBRARIES

The Abstract Application-Level Serial Communication (AASC) library
and its low-level support functions facilitate serial communication between
controllers and between a controller and another device such as a PC.

Dynamic C 5.xB-2 s Using AASC Libraries

AASC Library Description
AASC libraries allow the programmer to create buffered character streams
that perform input/output to/from ports in the communication devices.
One principal library, AASC.LIB, contains all the functions required for
these tasks. Table B-1 lists the support libraries used with AASC.LIB.

The AASC libraries are as device-independent as possible. Programs
include only the AASC.LIB code and the code required for the communi-
cation devices used by the application (for example, AASCSCC.LIB). The
application handles different communication devices simply by creating
separate device channels.

Two hidden circular buffers for each AASC channel store incoming and
outgoing information. This allows the application to process incoming and
outgoing information in chunks not larger than the circular buffers. The
buffer size is specified in the application.

Table B-1. Drivers Used in AASC.LIB

Driver Library Description

AASCDIO.LIB Contains specific standard input/output (STDIO)
routines to support the AASC libraries.

AASCSCC.LIB Operates channels on the Zilog 85C30 Serial
Communication Controller used in BL1100 and
BL1700 controllers.

AASCUART.LIB Operates RS-232 port on the XP8700 PLCBus
expansion board supported by most Z-World
controllers.

AASCURT2.LIB Operates RS-232 port on the XP8700 PLCBus
expansion board on controllers (e.g., BL1700) with
16-bit PLCBus addressing.

AASCZ0.LIB Handles communication on the Z0 port of the Zilog
Z180 microprocessor used by Z-World controllers.
This port is usually connected to an RS-232 driver.

AASCZ1.LIB Handles communication on the Z1 port of the Zilog
Z180 microprocessor used by Z-World controllers.
This port is usually connected to an RS-485 driver.

AASCZN.LIB Operates ZNet-specific routines on the RS-485
network. All participating controllers must use the
same driver. One controller is designated the master
controller by defining the macro ZNMASTER to be
non-zero before invoking #use AASCZN.LIB. This
library uses the Z1 port of the Zilog Z180
microprocessor.

Function Reference Using AASC Libraries s B-3

AASC support libraries implement custom device drivers and interrupt
service routines (ISRs) for each communication device. The application
only needs to initialize a channel and a local buffer, then make function
calls to check the status of the buffers, and read or write to/from the
buffers.

AASC Library Operation

AASC libraries read (receive), write (transmit), peek (search), provide
status, and handle errors. Figure B-1 shows the hierarchy of these AASC
functions. Note that the management of the circular buffer and the
hardware/serial ISR levels is hidden from the programmer. These two
reserved levels are contained in the support libraries listed in Table B-1.

!
Read operations may preempt write operations and vice versa,
but a read operation cannot preempt another read operation
and a write operation cannot preempt another write operation.

Read

Information is received either by block or by byte. Only one method is
needed, but the other can always be implemented. It is more efficient to
have both methods available. The block read function supports fixed-size
and variable-size reads. The application may read exactly n bytes, it may
read nothing at all, or it may read up to n bytes. In any case, the function
returns the number of bytes actually read.

Application Program Level

Read
Buffer

Write
Buffer

aascReadChar() aascWriteChar()

Reserved Level

Circular Buffer
Management

User�s Buffer

Reserved Level
Hardware and Serial ISR Level

CTS

RTS

Rx

Tx

Figure B-1. Hierarchy of AASC Functions

Dynamic C 5.xB-4 s Using AASC Libraries

Write

The transmit (write) routines are mirror images of the read functions.
There is one function for byte writes and one for block writes. The block
write function can write part of a block, or it may write all or none of the
block. This is important for multi-threaded programs because writing all
or none prevents interleaving messages originating from different coopera-
tive threads.

Peek

A special function supported by the AASC libraries allows the application
to �peek� into the buffer without retrieving a byte. The peek function
aascPeek searches for a substring, for example, to identify the type of
incoming packet, without actually changing the contents of the buffer.
Another �peek� type function, aascScanTerm, can also search for a
particular character such as the terminating character of a packet.

Status and Errors

AASC libraries provide full status reports about the application. The
libraries can report the number of bytes used and the number of bytes still
free in the read or write buffers. Such information is useful for the applica-
tion to schedule message checking or dynamic transmission.

AASC libraries also report both hardware errors (for example, framing
error, parity error) and software errors (for example, buffer overrun).
Error conditions are not cleared automatically.

Library Use

Follow these six steps when using AASC libraries.

1. Identify the communication device (e.g., Z0, SCC Channel A, UART).

2. Allocate and initialize the channel with aascOpen().

3. Set up read (receive) and write (transmit) circular buffers (e.g., use
aascSetReadBuf()).

4. Carry out reads and writes (e.g., use aascWriteChar()).

5. Check status and handle errors (e.g., use aascGetError()).

6. When finished, close the channel with aascClose().

Sample Program

The following sample program provides an example of the use of the
AASC framework in asynchronous serial communication with a terminal.
The program demonstrates how to use port SCC Channel A as an AASC
device. Other sample programs may be found in the Dynamic C
SAMPLES\AASC subdirectory.

Function Reference Using AASC Libraries s B-5

This program simply echoes text typed at an ascii terminal back to the
terminal. Connect a controller with a serial communication controller IC
through SCC Channel A to a PC or dumb terminal. If using a PC, Win-
dows terminal.exe can be used in ANSI Terminal Emulation with
Local Echo disabled and Flow Control set to None. If RTS/CTS hand-
shaking is enabled by setting the macro SHAKE to non-zero, enable Flow
Control" within terminal.exe to Hardware. This sample program
defaults to settings of No Parity, One Stop Bit, and Eight Data
Bits. Set your PC accordingly.

The following steps describe how this �echoing� process works.

1. The program accesses AASC.LIB and the appropriate AASC library
AASCSCC.LIB with #use.

2. Definitions are created for circular read and write buffers, and for the
user buffer workBuffer. A user buffer pointer, pworkBuffer, is
also created for this example.

3. _GLOBAL_INIT() is called to initialize the AASC framework.

4. The function aascOpen() is used to create a channel to the DEV_SCC
device at 8N1.

5. The program checks to make sure that a controller with an SCC IC is
being used.

6. The transmitter and receiver for the channel chan are switched on by
aascTxSwitch() and by aascRxSwitch().

7. The program sets up the circular buffers with aascReadBuf and
aascSetWrite Buf.

8. If a character is read, the program enters another loop that sends the
characters in workBuffer back to the remote terminal. The function
will not return until all the characters are read from workBuffer and
sent back to the terminal. (For example, if two characters are in
workBuffer, the function will return only when both characters are
sent.)

Dynamic C 5.xB-6 s Using AASC Libraries

SCCECHO.C

#use aasc.lib
#use aascscc.lib

#define BUFSIZE 684 // Size of circular buffer.
#define BAUDMULT 8 // multiples of 1200 bps

// (8 × 1200 bps = 9600 bps).
#define SHAKE 0 // Set to 1 for RTS/CTS handshaking.

char readBuffer[BUFSIZE],writeBuffer[BUFSIZE];
char workBuffer[BUFSIZE],*pworkBuffer;
struct _Channel *aascChannel;

main(){
_GLOBAL_INIT(); // This must be the first action

// performed in main().

// Open channel A of the SCC at 8N1

aascChannel = aascOpen(DEV_SCC, SHAKE,
SCC_A | SCC_1STOP | SCC_NOPARITY | SCC_8DATA |
SCC_1200*BAUDMULT, NULL);

if(aascChannel==NULL) {
printf("SCC channel A not available.");
return;

}

// Set up the circular buffers.

aascSetReadBuf(aascChannel, readBuffer,
sizeof(readBuffer));

aascSetWriteBuf(aascChannel, writeBuffer,
sizeof(writeBuffer));

// Process the data transfer.
while(1) {

hitwd();
// Perform data transfer.

if(aascReadChar(aascChannel, workBuffer)) {
while(!aascWriteChar(aascChannel,

workBuffer[0])) {
hitwd();

}
}

}
}

Function Reference Using AASC Libraries s B-7

XModem Transfer
The AASC libraries have extensive support for the XModem-CRC transfer
protocol. The AASC libraries allow the application to define callback
functions to read or write each block of an XModem packet. This means
there is no need to have the entire transfer block ready before transmission,
or to allocate space for the entire incoming block. Default callback func-
tions are provided for normal read-to-memory or write-from-memory op-
erations.

Library Use

1. Initialize the virtual driver.

2. Initialize the AASC framework with an appropriate device such as SCC
Channel A.

3. Initialize an XModem data buffer and the number of bytes to transfer
with aascXMWrInitPhy() or aascXMRdInitPhy() for physical
memory, or aascXMWrInitLog() or aascXMRdInitLog() for
logical memory.

4. Initialize XModem transfer with aascWriteXModem() or
aascReadXModem().

5. Perform the XModem transfer with aascWriteModem() or
aascReadXModem().

Dynamic C 5.xB-8 s Using AASC Libraries

Sample Program

The following sample program provides an example of the use of an
AASC framework in XModem data transfer. The program sends one block
of 128 characters to a remote device using XModem-CRC. Configure the
remote device for 9600 bps at 8N1 without RTS/CTS flow control.

The virtual driver must be used since XModem incorporates costatements
to enable multitasking.

Note that any channel may be used by changing SCC Channel A to the
desired port. For example, to use port Z1 on the Z180, change
AASCSCC.LIB to AASCZ1.LIB, and change the parameters in
aascOpen() to reflect those for Z1.

The following steps describe the XModem transmission example.

1. The program accesses the appropriate libraries with #use.

2. Definitions are created for the circular read and write buffers, and for
the XModem buffer.

4. aascInit() is called to initialize the AASC framework.

5. A data string is created for transfer.

6. VdInit() is called to initialize the virtual driver.

7. aascOpen() is used to create a channel to the SCC_A device at 8N1
and 9600 bps.

8. The program checks for the presence of the SCC chip on the controller.

9. The circular buffers are then initialized by aascSetReadBuf() and by
aascSetWriteBuf(), and are made accessible to the AASC frame-
work.

10. XModem transmission is then performed by repeatedly calling
aascWriteXModem() with the initialization parameter set to 0.

11. XModem transmission finishes when aascWriteXModem() returns a 1.

Function Reference Using AASC Libraries s B-9

XM_SEND.C

#use vdriver.lib
#use aasc.lib
#use aascscc.lib

#define BUFSIZE 1024 // Size of circular buffer.
#define BAUDMULT 8 // multiples of 1200 bps

// (8 × 1200 bps = 9600 bps).

struct _Channel *aascChannel;
char circBufIn[BUFSIZE], circBufOut[BUFSIZE];
char aascBuffer[BUFSIZE];

int aascInit(void);

void main(void){
// Initialize the AASC framework.
if(!aascInit()) exit(-1);
// Create some data to transfer.
strcpy(aascBuffer, "This is some xmodem data transfer�");
// Process the data transfer.
while(1) {

hitwd();
printf("Press any key to initiate Xmodem

Controller-to-Device transfer.\r");
hitwd();
if(kbhit()) {

getchar();
printf("\n\nXmodem transfer initiated...\n");
hitwd();
// Set up XModem transfer to logical memory.
aascXMWrInitLog((unsigned) aascBuffer, 128);
aascWriteXModem(aascChannel, 0, 1,

aascWrCallBackLg);
while(!aascWriteXModem(aascChannel, 0, 0,

aascWrCallBackLg)) hitwd();
printf("\n\nXmodem transfer finished...\n\n");
hitwd();

}
}

}

continued...

Dynamic C 5.xB-10 s Using AASC Libraries

int aascInit(void){
// Initialize the virtual driver
VdInit();
// Open channel A of the SCC at 8N1
aascChannel = aascOpen(DEV_SCC, 0,

SCC_A | SCC_1STOP | SCC_NOPARITY | SCC_8DATA |
SCC_1200*BAUDMULT, NULL);

if(aascChannel==NULL) {
printf("SCC channel A not available.");
return;

}
// Set up the circular buffers.
aascSetReadBuf(aascChannel, circBufIn,

sizeof(circBufIn));
aascSetWriteBuf(aascChannel, circBufOut,

sizeof(circBufOut));
}

Function Reference Z-World Products s C-1

APPENDIX C: Z-WORLD PRODUCTS

Dynamic C 5.xC-2 s Z-World Products

Name Description

PK2300 9.216-MHz packaged controller. Provides 19 digital I/O lines
(11 lines are configurable), 2 serial channels, a resistance
measurement input, and real-time clock. ABS enclosure.

PK2310 PK2300, without RTC and resistance measurement circuit.

PK2200 18.432-MHz packaged controller. Provides 16 digital inputs,
14 high-current outputs, 2 serial channels, and enclosure with
2x20 LCD and 2x6 keypad.

PK2210 PK2200, with 9.216-MHz clock.

PK2220 PK2200 without enclosure, LCD or keypad.

PK2230 PK2200 with a 9.216-MHz clock. No enclosure, LCD or
keypad.

PK2240 PK2200 with a 128 x 64 EL backlit graphic LCD and 3 x 4
keypad.

PK2100 6.144-MHz packaged controller. Provides 7 digital inputs,
10 high-current outputs, 6 universal inputs, 2 SPST relays, 2
serial channels, one high-gain analog input, 2 analog outputs,
and a rugged enclosure with 2x20 LCD and 2x6 keypad.
Operates at 24 volts. D.C.

PK2110 PK2100 that operates at 12 V D.C.

PK2120 PK2100 without enclosure, LCD or keypad.

PK2130 PK2120 that operates at 12 V D.C.

BL1600 9.216-MHz board-level controller. Provides 12 digital
inputs, 14 digital outputs, 2 serial channels, EEPROM and
real-time clock

BL1610 BL1600 without serial channels, high-current drivers,
EEPROM, or real-time clock.

BL1500 9.216-MHz board-level controller. Provides 24 PIO lines,
four 12-bit ADC channels, one RS232 channel, one RS485
channel, and real-time clock. 128K SRAM.

BL1510 BL1500 with 32K SRAM. No real-time clock. Provides 2
additional PIO lines.

BL1520 BL1500 with 32K SRAM. No real-time clock or 12-bit A/D
converter. Provides 2 additional PIO lines.

BL1400 6.144-MHz board-level controller. Provides 12 PIO lines,
one RS-232 channel, one RS-485 channel and real-time clock.

BL1410 BL1400 without the RS-485 channel and real-time clock.
Provides 2 additional PIO lines.

Function Reference Z-World Products s C-3

Name Description

BL1300 9.216-MHz board-level controller. Provides 4 serial channels
and two 16-bit parallel ports. Optional enclosure.

BL1200 9.216-MHz board-level controller. Provides 8 optically
isolated inputs, 6 high-current outputs, and 2 RS-485
channels.

BL1100 9.216-MHz board-level controller. Provides 16 digital I/O
lines, 8 high-current drivers, 7 10-bit ADC inputs, 2 RS-232
channels and 2 RS-485 channels. Switching power supply.

BL1110 BL1100 with a linear (not switching) power supply.

BL1120 BL1100 with a 12.288-MHz clock and linear (not switching)
power supply. Runs 50% faster.

CM7100 18.432-MHz microprocessor core module. Provides
processor, 384 device addresses, 128K SRAM, EEPROM, real-
time clock, and 691 supervisor.

CM7110 CM7100 with 9.216-MHz clock.

CM7120 CM7100 with 9.216-MHz clock and 32K SRAM.

CM7130 CM7100 with 9.216-MHz clock and 32K SRAM. Without 691
supervisor, real-time clock, and EEPROM.

CM7200 18.432-MHz microprocessor core module. Provides
processor, 384 device addresses, 128K SRAM, real-time
clock, 691 supervisor, and 128K flash EPROM.

CM7210 CM7200 with 9.216-MHz clock.

CM7220 CM7200 with 9.216-MHz clock and 32K SRAM.

CM7230 CM7200 with 9.216-MHz clock and 32K SRAM. Without 691
supervisor or real-time clock.

Other products include the BL1000, LP3100 and the PK2400.

Dynamic C 5.xC-4 s Z-World Products

Function Reference Index s I-1

INDEX

Symbols

#define 3-10
_5key_12out 5-7
_5key_14out 5-8
_5key_bank1dig 5-8
_5key_bank2dig 5-8
_5key_boolean 5-3
_5key_dacout 5-7
_5key_date 5-4
_5key_diginput 5-8
_5key_float 5-2
_5key_init_item 5-5
_5key_integer 5-3
_5key_menu 5-6
_5key_server 5-6
_5key_setalarm 5-6
_5key_setfunc 5-7
_5key_setmenu 5-5, 5-6
_5key_setmsg 5-7
_5key_time 5-4
_5key_uinput 5-8
_5keygetdate 5-2
_5keygettime 5-2
_5keysetdate 5-2
_5keysettime 5-2
_ALARM1 ... _ALARM4 5-6
_GLOBAL_INIT 1-2
_pow10 1-10
_prot_init 1-22
_prot_recover 1-22
4 × 6 keypad

initializing 3-10

A

a24_32 1-24
a32_24 1-24
AASC libraries 4-2, B-2

buffer sizes B-2
callback functions B-7
description B-2

AASC libraries
operations B-3

peek B-4
read B-3
write B-3

sample programs B-4
status and errors B-4
use B-4
XModem transfer B-7

AASC.LIB 4-2, B-2
aascClearError 4-6
aascClose 4-3
AASCDIO.LIB B-2
aascFlush 4-6
aascFlushRdBuf 4-7
aascFlushWrBuf 4-7
aascGetError 4-6
aascOpen 4-2
aascPeek 4-5, B-4
aascPipe 4-5
aascPrintf 4-7
aascRdCBackLocLg 4-8, 4-9
aascReadBlk 4-4
aascReadBufFree 4-6
aascReadBufLeft 4-6
aascReadChar 4-4
aascReadXModem 4-8
aascRxSwitch 4-3
aascScanTerm 4-5, B-4
AASCSCC.LIB B-2
aascSetReadBuf 4-3
aascSetWriteBuf 4-3
aascTxSwitch 4-4
AASCUART.LIB B-2
AASCURT2.LIB B-2
aascVPrintf 4-7
aascWrCallBackLg 4-11
aascWrCallBackPh 4-11
aascWriteBlk 4-5
aascWriteBufFree 4-6
aascWriteBufLeft 4-6

Dynamic C 5.xI-2 s Index

aascWriteChar 4-4
aascWriteXModem 4-10
aascXMRdInitLog 4-8
aascXMRdInitPhy 4-8
aascXMWrInitLog 4-10
aascXMWrInitPhy 4-9
AASCZ0.LIB B-2
AASCZ1.LIB B-2
AASCZN.LIB B-2
abs 1-7
acos 1-7
acot 1-7
acsc 1-7
ad_rd 3-3
ad_rd10 3-2
ad_rd10s 3-2
ad_rd12 3-2
ad_rd12a 3-3
ad_rd8 3-2
ad_st 5-36
ad20_cal 5-29
ad20_cal_n 5-31
ad20_mux 5-29
ad20_mux_n 5-31
ad20_rd 5-29
ad20_rd_n 5-32
ad20_rdy 5-29
ad20_rdy_n 5-31
ADD key 5-3, 5-4, 5-5, 5-7, 5-8
addresses

PLCBus 3-6
alarm functions

five-key system 5-6
asec 1-7
asin 1-7
atan 1-7
atan2 1-7
atof 1-15
atoi 1-15
atol 1-15

B

bfree 1-20
bit 1-3

BL1100 3-2, 5-28, 5-42
setperiodic 5-17

BL1600 series 3-10
Boolean parameters

five-key system 5-3
bus

expansion 3-6, 3-7, 3-8, 3-9
BUSADR0 3-6
BUSADR2 3-6
BUSRD0 3-6
BUSRD1 3-6
BUSWR 3-6

C

calloc 1-20
ceil 1-7
changing parameters with the five-

key system 5-2, 5-3, 5-4,
5-7, 5-8

Charger1302 3-4
CIRCBUF.LIB B-2
Clear_Gr_Screen 5-38
Clear_GrTxt_Screen 5-37
clock 5-13
CoBegin 1-22
CoData 1-22
comp48 2-2
CoPause 1-22
CoReset 1-22
CoResume 1-22
cos 1-7
cosh 1-8

D

DAC board
expansion bus 3-8, 3-9
PLCBus 3-8, 3-9

DAC output 5-7
DAC_Board_Addr 5-43, 5-47
DAC_Off 5-45, 5-48
DAC_On 5-44, 5-48
data types

five-key system 5-2, 5-3, 5-4

Function Reference Index s I-3

date and time 5-12, 5-13
date parameters

five-key system 5-4
DebounceCount 3-10
debouncing 3-10
Define_Cursor 5-38
deg 1-8
DelayMs 5-16
DelaySec 5-16
DelayTicks 5-16
DELETE key 5-3, 5-4, 5-5,

5-7, 5-8
disable interrupts 1-3
di 1-3
digital input 5-8
display

liquid crystal 3-9
DMA0 5-16
DMA0_IOM 5-20
DMA0_MIO 5-19
DMA0_MM 5-19
DMA0_Off 5-18
DMA0_Rx 5-18
DMA0_SerialInit 5-18
DMA0_Tx 5-19
DMA0Count 5-17
DMA1 5-16
DMA1_IOM 5-20
DMA1_MIO 5-20
DMA1_Off 5-18
DMA1Count 5-18
dmacopy 5-13
DMASnapShot 5-17, 5-18
doint 5-12
doprnt 1-12
Draw_Axis 5-39
Draw_Line 5-39
Draw_Poly 5-39
driver

virtual 5-7, 5-8

E

ee_rd 1-3
ee_wr 1-3

eei_rd 5-16
eei_wr 5-16
ei 1-3
enable interrupts 1-3
escape sequences 3-9
exit 1-6
exp 1-8
exp_init 5-28
exp_init_n 5-30
expansion bus 3-6, 3-7, 3-8, 3-9
extended five-key service functions

5-7, 5-8

F

F1, F2, F3, F4 5-7
fabs 1-8
five-key programming 5-2,

5-3, 5-4, 5-5, 5-6, 5-7, 5-8
five-key system 5-2, 5-3, 5-4,

5-5, 5-6, 5-7, 5-8
ADD key 5-3, 5-4, 5-5,

5-7, 5-8
alarm functions 5-6
Boolean parameters 5-3
changing parameters 5-2,

5-3, 5-4, 5-7, 5-8
data types 5-2, 5-3, 5-4
date parameters 5-4
DELETE key 5-3, 5-4, 5-5,

5-7, 5-8
extended service functions

5-7, 5-8
float parameters 5-2
function keys 5-7
integer parameters 5-3
ITEM key 5-3, 5-4, 5-5,

5-7, 5-8
MENU key 5-3, 5-4, 5-5,

5-7, 5-8
monitoring parameters 5-2,

5-3, 5-4, 5-7, 5-8
parameter list 5-6

adding items 5-5

Dynamic C 5.xI-4 s Index

five-key system
parameters

Boolean 5-3
date 5-4
float 5-2
integer 5-3
time 5-4

service functions 5-6, 5-7
string messages 5-7
time parameters 5-4

fk_helpmsg 5-21
fk_item_alpha 5-21
fk_item_enum 5-22
fk_item_int 5-21, 5-22
fk_item_setdate 5-22
fk_item_settime 5-22
fk_item_uint 5-21
fk_monitorkeypad 5-21
FKSAMP.C 5-21
float parameters

five-key system 5-2
floating-point functions 1-6
floor 1-8
fmod 1-8
formatting convention 1-14
free 1-20
frexp 1-8
ftoa 1-13
function chain 1-2
function keys

five-key system 5-7

G

get_def_na 5-30
get_na 5-30
getchar 1-10
gets 1-10
gettimer 2-2
getvect 1-21
GLOBAL_INIT 5-10
Graph_Init 5-38
grp_home_area 5-38
gtoa 1-12
gtoan 1-12

H

high-current output 5-7, 5-8
hitwd 1-5
hltoa 1-14
htoa 1-14
hv_dis 5-11
hv_enb 5-11
hv_wr 5-11

I

IBIT 1-4
iff 1-3, 1-21
Init_DAC 5-44, 5-47
init_daccal 3-11
init_kernel 2-3
init_kernel() 2-2
init_srtkernel 2-4
init_timer 5-17
init_timer0 5-14
init_timer1 5-14
initializing a keypad 3-10
input

digital 5-8
universal 5-8

int_timer1 5-14
integer parameters

five-key system 5-3
intoff 5-12
inton 5-12
intrmode 1-5
intrmode_1 1-5
intrmode_2 1-5
IRES 1-5
isalnum 1-18
isalpha 1-18
iscntrl 1-18
isCoDone 1-22
isCoRunning 1-22
isdigit 1-17
ISET 1-4
isgraph 1-18
islower 1-17
isprint 1-18

Function Reference Index s I-5

ispunct 1-17
isspace 1-17
isupper 1-17
isxdigit 1-17
ITEM key 5-3, 5-4, 5-5, 5-7, 5-8
itoa 1-14

K

kbhit 1-6
kernel

real-time 5-6
KEY4x6 3-10

L

labs 1-8
Latch_DAC1 5-44, 5-47
Latch_DAC2 5-44, 5-47
lc_beepscan 3-14
lc_cgram 3-9, 5-40
lc_char 3-9, 5-40
lc_cmd 5-40
lc_ctrl 3-9, 5-40
lc_init 3-9, 5-40
lc_init_keypad 5-9
lc_keyscan 3-10, 3-13
lc_kxget 3-10, 3-13, 5-9
lc_kxinit 3-10, 3-13, 5-9
lc_loadtab 5-9
lc_nl 5-40
lc_pos 5-40
lc_printf 3-9, 5-40
lc_putc 5-40
lc_rd 5-39
lc_setbeep 5-9
lc_settab 5-9
lc_stdcg 5-41
lc_wait 5-40
lc_wr 5-39
LCD 3-9
printf 3-9
special characters 3-9

lcd_clr_line 5-12
lcd_erase 5-41

lcd_erase_line 5-41
lcd_init 5-11
lcd_init_printf 5-41
lcd_printf 5-41
lcd_putc 5-41
lcd_resscrn 5-42
lcd_savscrn 5-41
lcd_server 5-2
lcd_wait 5-12
ldexp 1-8
lg_char 5-36
lg_init 5-36
lg_init_keypad 5-33
lg_nl 5-36
lg_pos 5-36
lg_printf 5-37
lg_putc 5-36
lg_rd 5-37
lg_wr 5-37
lg_wr03 5-37
liquid crystal display 3-9
lk_cgram 5-34
lk_char 5-34
lk_chkdat 5-35
lk_cmd 5-33
lk_ctrl 5-34
lk_getknum 5-36
lk_init 5-33
lk_init_keypad 5-33
lk_int_timer1 5-33
lk_keyw 5-32
lk_kxget 5-33
lk_kxinit 5-32
lk_lecho 5-36
lk_led 5-33
lk_loadtab 5-32
lk_nl 5-34
lk_pos 5-34
lk_printf 5-34
lk_putc 5-34
lk_rd 5-33
lk_run_menu 5-35
lk_secho 5-36
lk_setbeep 5-33

Dynamic C 5.xI-6 s Index

lk_setdate 5-35
lk_settab 5-32
lk_settime 5-35
lk_showdate 5-35
lk_showtime 5-35
lk_stdcg 5-34
lk_tdelay 5-33
lk_viewl 5-36
lk_wait 5-33
lk_wr 5-33
log 1-8
log10 1-8
longjmp 1-20
lprintf 5-12
lputc 5-11
lputs 5-12
ltoa 1-12
ltoan 1-12

M

malloc 1-20
Map_Bit_Pattern 5-39
math functions 1-6
memchr 1-17
memcmp 1-19
memcpy 1-17
memset 1-15, 1-17
MENU key 5-3, 5-4, 5-5, 5-7,

5-8
mgdac_off 3-9
mgdac_on 3-9
mginit_dac 3-8
mglatch_dac1 3-8
mglatch_dac2 3-8, 3-9
mgplc_dac_board 3-8
mgplc_set_relay 3-7
mgplcrly_board 3-7
mgplcuio_board 3-7
mgread12data0 3-6
mgread12data1 3-6
mgread12data2 3-6
mgrestore_pbus 3-7
mgsave_pbus 3-7

mgset_dac1 3-8
mgset_dac2 3-9
mgset12adr 3-6, 3-8, 3-9
mgset12data 3-6
mgwrite_dac1 3-8
mgwrite_dac2 3-8, 3-9
mgwrite4data 3-6
mk_st 5-36
mktime 5-13
mktm 5-13
modf 1-9
monitoring parameters with the

five-key system 5-2, 5-3,
5-4, 5-7, 5-8

mux_ch 5-29
mux_ch_n 5-30

N

nmiint 5-17
NO_FUNCTION 5-6, 5-7

O

outchrs 1-14
outport 1-3
outportn 5-13
output

DAC 5-7
high-current 5-7, 5-8
relay 5-7, 5-8

outstr 1-15

P

pack 1-20
parallel I/O 3-9
parameters

five-key system
Boolean 5-3
date 5-4
float 5-2
integer 5-3
time 5-4

PBus12_Addr 5-42, 5-45

Function Reference Index s I-7

PBus4_Read0 5-42, 5-46
PBus4_Read1 5-42, 5-46
PBus4_ReadSp 5-42, 5-46
PBus4_Write 5-42, 5-45
pflt 1-13
phex 1-13
phy_adr 5-13
pint 1-12
PIO 3-9
PIOCA 3-5
PIOCAShadow 3-5
PIOCB 3-5, 3-6
PIOCBShadow 3-5, 3-6
PIODA 3-5
PIODB 3-6
PLCBus 3-6

addresses 3-6, 3-7, 3-8
DACs 3-8, 3-9
relays 3-7
state 3-7

plcbus_isr 5-15
plcport 5-10
plhex 1-13
plint 1-13
Poll_PBus_Node 5-45, 5-48
poly 1-9
Port A 3-9
pow 1-9
pow10 1-9
powerdown 5-17
powerlo 1-6
powerup 5-17
printf 1-11, 1-12

fieldcodes 1-11
for LCD 3-9

processor
stack 3-7

programming
five-key 5-2, 5-3, 5-4, 5-5,

5-6, 5-7, 5-8
putc 1-11
putchar 1-10
puts 1-10

Q

qsort 1-21

R

rad 1-8
read12data 5-11
Read1302 3-5
read24data0 5-15
read24data1 5-15
read4data 5-10
Read555 3-4
read8data0 5-15
read8data1 5-15
ReadBurst1302 3-5
readireg 1-21
ReadRam1302 3-5
ReadTime1302 3-4
real-time kernel 5-6
realloc 1-21
relay output 5-7, 5-8
Relay_Board_Addr 5-43, 5-46

XP8300 expansion board 3-7
XP8400 expansion board 3-7

relays
expansion bus 3-7
PLCBus 3-7

reload_vec 1-22
relocate_int1 5-16
request 2-2
RES 1-4
Reset_PBus 5-45, 5-48
Reset_PBus_Wait 5-45, 5-48
resPIOCA 3-5
resPIOCB 3-6
resPIODA 3-5
resPIODB 3-6
restore_shadow 5-14
rkernel 2-3
root2xmem 1-23
run_after 2-2
run_at 2-2
run_cancel() 2-2

Dynamic C 5.xI-8 s Index

run_every 2-2, 2-3
run_timer 2-2
runwatch 1-6

S

sample programs
echo transmission B-6
five-key system 5-21
XModem data transfer B-9

save_shadow 5-14
sel00 5-27
sel01 5-27
sel10 5-27
sel11 5-27
service functions

five-key system 5-7, 5-8
SET 1-4
Set_Auto_Mode 5-38
Set_DAC1 5-44, 5-48
Set_DAC2 5-44, 5-48
set_def_na 5-30
Set_Display_Mode 5-37
Set_Overlap_Mode 5-38
Set_PBus_Relay 5-43, 5-46
Set_Pixel 5-38
Set_Pointer 5-38
set12adr 5-10
set16adr 5-10
set24adr 5-15
set4adr 5-10
Set555 3-4
set81adr 5-28
set82adr 5-28
set8adr 5-15
setbeep 5-14
setctc 3-3
setdaisy 3-3
setireg 1-21
setjmp 1-19
setled1 3-4
setperiodic 5-17

BL1100 5-17
setPIOCA 3-5
setPIOCB 3-5

setPIODA 3-5
setPIODB 3-6
setvect 1-21
sin 1-9
Sin_Wave 5-39
sinh 1-9
sizeof 5-2, 5-3, 5-4, 5-5
sleep 5-17
sm_bdaddr 5-23
sm_board_reset 5-24
sm_ctlreg 5-26
sm_drvoe 5-26
sm_find_boards 5-23
sm_hitwd 5-23
sm_int 5-27
sm_led 5-26
sm_poll 5-23
SmartCore 3-13
smc_cmd 5-24
smc_hardreset 5-24
smc_manual_move 5-25
smc_seek_origin 5-25
smc_setmove 5-25
smc_setspeed 5-24
smc_softreset 5-24
smc_stat0 5-26
smc_stat3 5-26
smcq_moveto 5-25
smq_hardreset 5-24
smq_read16 5-23
smq_read8 5-23
special characters

for LCD 3-9
sprintf 1-10
sqrt 1-9
srtk_hightask 2-4
srtk_lowtask 2-4
st_hour 5-35
st_min 5-35
st_sec 5-36
sta01 5-37
sta03 5-37
stack processor 3-7
stall 5-37

Function Reference Index s I-9

strcat 1-15
strchr 1-16
strcmp 1-16
strcpy 1-15
strcspn 1-16
string messages in the five-key

system 5-7
strlen 1-17
strncat 1-16
strncmp 1-16
strncpy 1-15
strpbrk 1-16
strrchr 1-16
strspn 1-16
strstr 1-19
strtod 1-18
strtok 1-18
strtol 1-18
struct_tm 5-12, 5-13
suspend 2-3
swap 1-20
sysclock 1-6

T

tan 1-9
tanh 1-9
tdelay 5-14
Text_Addr 5-38
text_home_area 5-38
time and date 5-12, 5-13
time parameters

five-key system 5-4
timer0_isr 5-14
tm 5-12, 5-13
tm_rd 5-12
tm_wr 5-13
tolower 1-17
toupper 1-17
trigonometric functions 1-6

U

UIO board
expansion bus 3-7

PLCBus 3-7
universal I/O board 3-7
universal input 5-8
up_adcal 3-12
up_adrd 3-12
up_adtest 3-12
up_beep 3-14, 5-9
up_beepvol 5-9
up_dac420 3-12
up_daccal 3-11
up_dacout 3-11
up_digin 3-11, 3-13
up_docal 3-12
up_expout 3-12
up_higain 3-12
up_in420 3-12
up_lastkey 5-9
up_setout 3-11, 3-13
up_synctimer 5-10
up_uncal 3-12
uplc_init 5-9
utoa 1-14

V

vd_initquickloop 2-5
VdAdjClk 2-5
VdGetFreeWd 2-5
VdInit 2-4
VdReleaseWd 2-5
VdWdogHit 2-5
VIODrvr 3-10, 3-11, 3-13
VIOInit 3-10, 3-11, 3-13
virtual driver 1-5, 5-7, 5-8
virtual I/O driver 5-7

W

wdac 3-3
wderror 1-5
Write_DAC1 5-43, 5-47
Write_DAC2 5-44, 5-47
write12data 5-11
Write1302 3-5
write24data 5-14

Dynamic C 5.xI-10 s Index

write4data 5-11
write8data 5-15
WriteBurst1302 3-5
WriteRam1302 3-4
WriteTime1302 3-4

X

x_makadr 1-24
xgetchar 1-23
xgetfloat 1-23
xgetint 1-23
xgetlong 1-23
xmadr 1-23
xmem2root 1-23
XModem data transfer

packet structure 4-7
sample program B-9

XP8300 3-7
XP8400 3-7
XP8600 3-8, 3-9
XP8700 3-7
xputchar 1-23
xputfloat 1-23
xputint 1-23
xputlong 1-23
xstrlen 1-24

Z

Z180 1-3

Part No. 019-0002-03
Revision 3

Printed in U.S.A.

Z-World
2900 Spafford Street

Davis, California 95616-6800 USA

Telephone:
Facsimile:

24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
(530) 753-0618
http://www.z world.com
zworld@zworld.com

